Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment

Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment Laboratory analysis of trace metals using inductively coupled plasma (ICP) spectroscopy is not cost effective, and the complex spatial distribution of soil trace metals makes their spatial analysis and prediction problematic. Thus, for the health risk assessment of exposure to trace metals in soils, portable X-ray fluorescence (PXRF) spectroscopy was used to replace ICP spectroscopy for metal analysis, and robust geostatistical methods were used to identify spatial outliers in trace metal concentrations and to map trace metal distributions. A case study was carried out around an industrial area in Nanjing, China. The results showed that PXRF spectroscopy provided results for trace metal (Cu, Ni, Pb and Zn) levels comparable to ICP spectroscopy. The results of the health risk assessment showed that Ni posed a higher non-carcinogenic risk than Cu, Pb and Zn, indicating a higher priority of concern than the other elements. Sampling locations associated with adverse health effects were identified as ‘hotspots’, and high-risk areas were delineated from risk maps. These ‘hotspots’ and high-risk areas were in close proximity to and downwind from petrochemical plants, indicating the dominant role of industrial activities as the major sources of trace metals in soils. The approach used in this study could be adopted as a cost-effective methodology for screening ‘hotspots’ and priority areas of concern for cost-efficient health risk management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment

Loading next page...
 
/lp/elsevier/use-of-portable-x-ray-fluorescence-spectroscopy-and-geostatistics-for-Z5yeSXuxYM
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.01.050
Publisher site
See Article on Publisher Site

Abstract

Laboratory analysis of trace metals using inductively coupled plasma (ICP) spectroscopy is not cost effective, and the complex spatial distribution of soil trace metals makes their spatial analysis and prediction problematic. Thus, for the health risk assessment of exposure to trace metals in soils, portable X-ray fluorescence (PXRF) spectroscopy was used to replace ICP spectroscopy for metal analysis, and robust geostatistical methods were used to identify spatial outliers in trace metal concentrations and to map trace metal distributions. A case study was carried out around an industrial area in Nanjing, China. The results showed that PXRF spectroscopy provided results for trace metal (Cu, Ni, Pb and Zn) levels comparable to ICP spectroscopy. The results of the health risk assessment showed that Ni posed a higher non-carcinogenic risk than Cu, Pb and Zn, indicating a higher priority of concern than the other elements. Sampling locations associated with adverse health effects were identified as ‘hotspots’, and high-risk areas were delineated from risk maps. These ‘hotspots’ and high-risk areas were in close proximity to and downwind from petrochemical plants, indicating the dominant role of industrial activities as the major sources of trace metals in soils. The approach used in this study could be adopted as a cost-effective methodology for screening ‘hotspots’ and priority areas of concern for cost-efficient health risk management.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off