URANS predictions on the hydrodynamic interaction of a conceptual FLNG-LNG offloading system in regular waves

URANS predictions on the hydrodynamic interaction of a conceptual FLNG-LNG offloading system in... Using an unsteady Reynolds-Averaged Navier-Stokes solver, numerical investigations of hydrodynamic interactions of a conceptual FLNG-LNG offloading system in regular head sea waves are presented. Initially, a verification study is performed on estimating the numerical uncertainties within the URANS model. Based on the validated computational setup, the gap wave responses and wave loads on the FLNG and LNG vessels are studied for different wave frequencies and varying lateral separations. URANS predictions on the gap wave responses are compared with that from the experiments and demonstrate better accuracy over potential flow calculations especially at relatively high wave frequency conditions where gap wave resonance occurs. From the data gathered, it is seen that the gap wave resonance appears when the incident wave frequency approaches the natural frequency of the gap fluid, resulting in significant variation of wave loads in the directions of sway, heave, pitch and yaw. Meanwhile, reduction in the lateral separation shifts the occurrence of gap wave resonance to a higher wave frequency and brings more significant exaggerations on the gap waves and wave loads. Furthermore, when comparing model and full scale wave loads and gap wave responses, the two series of data correlate well implying insignificant influence of scale effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Engineering Elsevier

URANS predictions on the hydrodynamic interaction of a conceptual FLNG-LNG offloading system in regular waves

Loading next page...
 
/lp/elsevier/urans-predictions-on-the-hydrodynamic-interaction-of-a-conceptual-flng-10hCloJL3x
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0029-8018
eISSN
1873-5258
D.O.I.
10.1016/j.oceaneng.2018.01.102
Publisher site
See Article on Publisher Site

Abstract

Using an unsteady Reynolds-Averaged Navier-Stokes solver, numerical investigations of hydrodynamic interactions of a conceptual FLNG-LNG offloading system in regular head sea waves are presented. Initially, a verification study is performed on estimating the numerical uncertainties within the URANS model. Based on the validated computational setup, the gap wave responses and wave loads on the FLNG and LNG vessels are studied for different wave frequencies and varying lateral separations. URANS predictions on the gap wave responses are compared with that from the experiments and demonstrate better accuracy over potential flow calculations especially at relatively high wave frequency conditions where gap wave resonance occurs. From the data gathered, it is seen that the gap wave resonance appears when the incident wave frequency approaches the natural frequency of the gap fluid, resulting in significant variation of wave loads in the directions of sway, heave, pitch and yaw. Meanwhile, reduction in the lateral separation shifts the occurrence of gap wave resonance to a higher wave frequency and brings more significant exaggerations on the gap waves and wave loads. Furthermore, when comparing model and full scale wave loads and gap wave responses, the two series of data correlate well implying insignificant influence of scale effects.

Journal

Ocean EngineeringElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial