Unrevealing variation of microbial communities and correlation with environmental variables in a full culture-cycle of Undaria pinnatifida

Unrevealing variation of microbial communities and correlation with environmental variables in a... Bacteria are the most abundant organisms in natural environment and dominant drivers of multiple geochemical functions. Drawing a global picture of microbial community structure and understanding their ecological status remain a grand challenge. As a typical artificial process, aquaculture provides a large amount of foods and creates great economic benefits for human beings. However, few studies are aimed at the microbial community in the aquaculture environment of aquatic plants. We analyzed microbial communities from 21 water samples in a coastal aquaculture area during the whole cultural process of Undaria pinnatifida by using high-throughout sequencing of 16S rRNA gene. The progression of U. pinnatifida aquaculture can be divided into three stages, named Seeding, Growth, and Maturity, respectively. Microbial community structures in water of the aquaculture area were significantly changed during the progression of U. pinnatifida aquaculture. The relative abundance of Flavobacteriia and Thaumarchaeota classes increased in Growth stage, and β-proteobacteria and Acidimirobiia classes decreased with the growth of U. pinnatifida. Meanwhile, environmental factors shaping the microbial community structures were uncovered during the U. pinnatifida aquaculture by using canonical correspondence analysis and Mantel test, in which temperature, dissolved oxygen, pH and nitrogen could be the major influencing factors. In addition, the microbial functions based on KEGG pathways were predicted from the microbial community compositions by PICRUSt. The comparison of predicted functions suggested that Environmental Information Processing and Genetic Information Processing were the functional categories with the most obvious shift in abundance among different stages of U. pinnatifida aquaculture. The findings of this study allowed us to better understand the microbial community in coastal aquaculture systems and the impact of seaweed cultivation on coastal ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Environmental Research Elsevier

Unrevealing variation of microbial communities and correlation with environmental variables in a full culture-cycle of Undaria pinnatifida

Loading next page...
 
/lp/elsevier/unrevealing-variation-of-microbial-communities-and-correlation-with-AtrSuEGVwM
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0141-1136
eISSN
1879-0291
D.O.I.
10.1016/j.marenvres.2018.05.012
Publisher site
See Article on Publisher Site

Abstract

Bacteria are the most abundant organisms in natural environment and dominant drivers of multiple geochemical functions. Drawing a global picture of microbial community structure and understanding their ecological status remain a grand challenge. As a typical artificial process, aquaculture provides a large amount of foods and creates great economic benefits for human beings. However, few studies are aimed at the microbial community in the aquaculture environment of aquatic plants. We analyzed microbial communities from 21 water samples in a coastal aquaculture area during the whole cultural process of Undaria pinnatifida by using high-throughout sequencing of 16S rRNA gene. The progression of U. pinnatifida aquaculture can be divided into three stages, named Seeding, Growth, and Maturity, respectively. Microbial community structures in water of the aquaculture area were significantly changed during the progression of U. pinnatifida aquaculture. The relative abundance of Flavobacteriia and Thaumarchaeota classes increased in Growth stage, and β-proteobacteria and Acidimirobiia classes decreased with the growth of U. pinnatifida. Meanwhile, environmental factors shaping the microbial community structures were uncovered during the U. pinnatifida aquaculture by using canonical correspondence analysis and Mantel test, in which temperature, dissolved oxygen, pH and nitrogen could be the major influencing factors. In addition, the microbial functions based on KEGG pathways were predicted from the microbial community compositions by PICRUSt. The comparison of predicted functions suggested that Environmental Information Processing and Genetic Information Processing were the functional categories with the most obvious shift in abundance among different stages of U. pinnatifida aquaculture. The findings of this study allowed us to better understand the microbial community in coastal aquaculture systems and the impact of seaweed cultivation on coastal ecosystems.

Journal

Marine Environmental ResearchElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off