Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery

Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive... Beyond mesoporous silica nanoparticles (MSNs), mesoporous organosilica nanoparticles (MONs) have been becoming an even more attractive alternative to the traditional organic or inorganic nanomaterials in biomedical applications, especially for drug delivery, due to its high surface area, stable physicochemical properties, low toxicity, high biocompatibility, and particularly the devisable features decided by the incorporated organic fragments. However, it is still challenging to fabricate uniform ultrasmall MONs with tunable composition, morphology and fine biodegradability. Herein, we report, on the large-scale fabrication of monodispersed and molecularly organic-inorganic hybrid MONs with framework-incorporated physiologically active thioether bonds, controllable nanostructure, composition and morphology, which provides the material foundation for exploring the versatile biomedical applications of organosilica nanosystems. The hybrid MONs of less than 50 nm in particle size exhibit the unique reduction-responsive biodegradation behavior, and the biodegradation rate is significantly higher than that of traditional mesoporous silica nanoparticles with pure inorganic SiOSi framework. The reductive microenvironment-triggered biodegradation of MONs induces the concurrent reduction-responsive anticancer drug releasing from MONs, enabling tumor-specific drug delivery. Importantly, these biocompatible and biodegradable MONs exhibit significantly improved drug-delivery efficiency and enhanced tumor-suppressing effect for combating cancer. Based on the facile and large-scale fabrication of MONs with controllable key structure/composition/morphology parameters, unique tumor microenvironment-responsive biodegradation behavior and high performance for drug delivery, the MONs therefore show more promising potentials for clinical translation as compared to traditional MSNs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomaterials Elsevier

Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery

Loading next page...
 
/lp/elsevier/ultrasmall-mesoporous-organosilica-nanoparticles-morphology-bOUad7W7Yy
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0142-9612
D.O.I.
10.1016/j.biomaterials.2018.01.046
Publisher site
See Article on Publisher Site

Abstract

Beyond mesoporous silica nanoparticles (MSNs), mesoporous organosilica nanoparticles (MONs) have been becoming an even more attractive alternative to the traditional organic or inorganic nanomaterials in biomedical applications, especially for drug delivery, due to its high surface area, stable physicochemical properties, low toxicity, high biocompatibility, and particularly the devisable features decided by the incorporated organic fragments. However, it is still challenging to fabricate uniform ultrasmall MONs with tunable composition, morphology and fine biodegradability. Herein, we report, on the large-scale fabrication of monodispersed and molecularly organic-inorganic hybrid MONs with framework-incorporated physiologically active thioether bonds, controllable nanostructure, composition and morphology, which provides the material foundation for exploring the versatile biomedical applications of organosilica nanosystems. The hybrid MONs of less than 50 nm in particle size exhibit the unique reduction-responsive biodegradation behavior, and the biodegradation rate is significantly higher than that of traditional mesoporous silica nanoparticles with pure inorganic SiOSi framework. The reductive microenvironment-triggered biodegradation of MONs induces the concurrent reduction-responsive anticancer drug releasing from MONs, enabling tumor-specific drug delivery. Importantly, these biocompatible and biodegradable MONs exhibit significantly improved drug-delivery efficiency and enhanced tumor-suppressing effect for combating cancer. Based on the facile and large-scale fabrication of MONs with controllable key structure/composition/morphology parameters, unique tumor microenvironment-responsive biodegradation behavior and high performance for drug delivery, the MONs therefore show more promising potentials for clinical translation as compared to traditional MSNs.

Journal

BiomaterialsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off