UGR‘16: A new dataset for the evaluation of cyclostationarity-based network IDSs

UGR‘16: A new dataset for the evaluation of cyclostationarity-based network IDSs The evaluation of algorithms and techniques to implement intrusion detection systems heavily rely on the existence of well designed datasets. In the last years, a lot of efforts have been done toward building these datasets. Yet, there is still room to improve. In this paper, a comprehensive review of existing datasets is first done, making emphasis on their main shortcomings. Then, we present a new dataset that is built with real traffic and up-to-date attacks. The main advantage of this dataset over previous ones is its usefulness for evaluating IDSs that consider long-term evolution and traffic periodicity. Models that consider differences in daytime/nighttime or weekdays/weekends can also be trained and evaluated with it. We discuss all the requirements for a modern IDS evaluation dataset and analyze how the one presented here meets the different needs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computers & Security Elsevier

UGR‘16: A new dataset for the evaluation of cyclostationarity-based network IDSs

Loading next page...
 
/lp/elsevier/ugr-16-a-new-dataset-for-the-evaluation-of-cyclostationarity-based-6Y4zhSr0Mb
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0167-4048
D.O.I.
10.1016/j.cose.2017.11.004
Publisher site
See Article on Publisher Site

Abstract

The evaluation of algorithms and techniques to implement intrusion detection systems heavily rely on the existence of well designed datasets. In the last years, a lot of efforts have been done toward building these datasets. Yet, there is still room to improve. In this paper, a comprehensive review of existing datasets is first done, making emphasis on their main shortcomings. Then, we present a new dataset that is built with real traffic and up-to-date attacks. The main advantage of this dataset over previous ones is its usefulness for evaluating IDSs that consider long-term evolution and traffic periodicity. Models that consider differences in daytime/nighttime or weekdays/weekends can also be trained and evaluated with it. We discuss all the requirements for a modern IDS evaluation dataset and analyze how the one presented here meets the different needs.

Journal

Computers & SecurityElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off