UD-HMM: An unsupervised method for shilling attack detection based on hidden Markov model and hierarchical clustering

UD-HMM: An unsupervised method for shilling attack detection based on hidden Markov model and... The existing unsupervised methods usually require a prior knowledge to ensure the performance when detecting shilling attacks in collaborative filtering recommender systems. To address this limitation, in this paper we propose an unsupervised method to detect shilling attacks based on hidden Markov model and hierarchical clustering. We first use hidden Markov model to model user's history rating behaviors and calculate each user's suspicious degree by analyzing the user's preference sequence and the difference between genuine and attack users in rating behaviors. Then we use the hierarchical clustering method to group users according to user's suspicious degree and obtain the set of attack users. The experimental results on the MovieLens 1 M and Netflix datasets show that the proposed method outperforms the baseline methods in detection performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Knowledge-Based Systems Elsevier

UD-HMM: An unsupervised method for shilling attack detection based on hidden Markov model and hierarchical clustering

Loading next page...
 
/lp/elsevier/ud-hmm-an-unsupervised-method-for-shilling-attack-detection-based-on-DYaA4oPvvO
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0950-7051
D.O.I.
10.1016/j.knosys.2018.02.032
Publisher site
See Article on Publisher Site

Abstract

The existing unsupervised methods usually require a prior knowledge to ensure the performance when detecting shilling attacks in collaborative filtering recommender systems. To address this limitation, in this paper we propose an unsupervised method to detect shilling attacks based on hidden Markov model and hierarchical clustering. We first use hidden Markov model to model user's history rating behaviors and calculate each user's suspicious degree by analyzing the user's preference sequence and the difference between genuine and attack users in rating behaviors. Then we use the hierarchical clustering method to group users according to user's suspicious degree and obtain the set of attack users. The experimental results on the MovieLens 1 M and Netflix datasets show that the proposed method outperforms the baseline methods in detection performance.

Journal

Knowledge-Based SystemsElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial