Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution

Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary... Heavy haze pollution occurs frequently in northern China, most critically in the Beijing-Tianjin-Hebei area (BTH). Zibo, an industrial city located in Shandong province, is often listed as one of the top ten most polluted cities in China, particularly in winter. However, no studies of haze in Zibo have been conducted, which limits the understanding of the source and formation of haze pollution in this area, as well as mutual effects with the BTH area. We carried out online and continuous integrated field observation of particulate matter in winter, from 11 to 25 January 2015. SO42−, NO3−, and NH4+ (SIA) and organics were the main constituents of PM2.5, contributing 59.4% and 33.6%, respectively. With the increasing severity of pollution, the contribution of SIA increased while that of organics decreased. Meteorological conditions play an important role in haze formation; high relative humidity (RH) and low wind speed increased both the accumulation of pollutants and the secondary transition from gas precursors (gas-particle phase partitioning). Since RH and the presence of O3 can indicate heterogeneous and photochemistry processes, respectively, we carried out correlation analysis and linear regression to identify their relative importance to the three main secondary species (sulfate, nitrate, and secondary organic carbon (SOC)). We found that the impact of RH is in the order of SO42− > NO3− > SOC, while the impact of O3 is reversed, in the order of SOC > NO3− > SO42−, indicating different effect of these factors on the secondary formation of main species in winter. Cluster analysis of backward trajectories showed that, during the observation period, six directional sources of air masses were identified, and more than 90% came from highly industrialized areas, indicating that regional transport from industrialized areas aggravates the haze pollution in Zibo. Inter-regional joint prevention and control is necessary to prevent further deterioration of the air quality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution

Loading next page...
 
/lp/elsevier/typical-winter-haze-pollution-in-zibo-an-industrial-city-in-china-vU6v1uALiY
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.05.081
Publisher site
See Article on Publisher Site

Abstract

Heavy haze pollution occurs frequently in northern China, most critically in the Beijing-Tianjin-Hebei area (BTH). Zibo, an industrial city located in Shandong province, is often listed as one of the top ten most polluted cities in China, particularly in winter. However, no studies of haze in Zibo have been conducted, which limits the understanding of the source and formation of haze pollution in this area, as well as mutual effects with the BTH area. We carried out online and continuous integrated field observation of particulate matter in winter, from 11 to 25 January 2015. SO42−, NO3−, and NH4+ (SIA) and organics were the main constituents of PM2.5, contributing 59.4% and 33.6%, respectively. With the increasing severity of pollution, the contribution of SIA increased while that of organics decreased. Meteorological conditions play an important role in haze formation; high relative humidity (RH) and low wind speed increased both the accumulation of pollutants and the secondary transition from gas precursors (gas-particle phase partitioning). Since RH and the presence of O3 can indicate heterogeneous and photochemistry processes, respectively, we carried out correlation analysis and linear regression to identify their relative importance to the three main secondary species (sulfate, nitrate, and secondary organic carbon (SOC)). We found that the impact of RH is in the order of SO42− > NO3− > SOC, while the impact of O3 is reversed, in the order of SOC > NO3− > SO42−, indicating different effect of these factors on the secondary formation of main species in winter. Cluster analysis of backward trajectories showed that, during the observation period, six directional sources of air masses were identified, and more than 90% came from highly industrialized areas, indicating that regional transport from industrialized areas aggravates the haze pollution in Zibo. Inter-regional joint prevention and control is necessary to prevent further deterioration of the air quality.

Journal

Environmental PollutionElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off