Typical retinotopic locations impact the time course of object coding

Typical retinotopic locations impact the time course of object coding In everyday visual environments, objects are non-uniformly distributed across visual space. Many objects preferentially occupy particular retinotopic locations: for example, lamps more often fall into the upper visual field, whereas carpets more often fall into the lower visual field. The long-term experience with natural environments prompts the hypothesis that the visual system is tuned to such retinotopic object locations. A key prediction is that typically positioned objects should be coded more efficiently. To test this prediction, we recorded electroencephalography (EEG) while participants viewed briefly presented objects appearing in their typical locations (e.g., an airplane in the upper visual field) or in atypical locations (e.g., an airplane in the lower visual field). Multivariate pattern analysis applied to the EEG data revealed that object classification depended on positional regularities: Objects were classified more accurately when positioned typically, rather than atypically, already at 140 ms, suggesting that relatively early stages of object processing are tuned to typical retinotopic locations. Our results confirm the prediction that long-term experience with objects occurring at specific locations leads to enhanced perceptual processing when these objects appear in their typical locations. This may indicate a neural mechanism for efficient natural scene processing, where a large number of typically positioned objects needs to be processed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Typical retinotopic locations impact the time course of object coding

Loading next page...
 
/lp/elsevier/typical-retinotopic-locations-impact-the-time-course-of-object-coding-oV66RFjSk0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2018.05.006
Publisher site
See Article on Publisher Site

Abstract

In everyday visual environments, objects are non-uniformly distributed across visual space. Many objects preferentially occupy particular retinotopic locations: for example, lamps more often fall into the upper visual field, whereas carpets more often fall into the lower visual field. The long-term experience with natural environments prompts the hypothesis that the visual system is tuned to such retinotopic object locations. A key prediction is that typically positioned objects should be coded more efficiently. To test this prediction, we recorded electroencephalography (EEG) while participants viewed briefly presented objects appearing in their typical locations (e.g., an airplane in the upper visual field) or in atypical locations (e.g., an airplane in the lower visual field). Multivariate pattern analysis applied to the EEG data revealed that object classification depended on positional regularities: Objects were classified more accurately when positioned typically, rather than atypically, already at 140 ms, suggesting that relatively early stages of object processing are tuned to typical retinotopic locations. Our results confirm the prediction that long-term experience with objects occurring at specific locations leads to enhanced perceptual processing when these objects appear in their typical locations. This may indicate a neural mechanism for efficient natural scene processing, where a large number of typically positioned objects needs to be processed.

Journal

NeuroimageElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off