Two novel Pb(II) coordination polymers (CPs) based on 4-(4-oxopyridin-1(4H)-yl) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid: Band gaps, structures, and their photoelectrocatalytic properties in CO2-saturated system

Two novel Pb(II) coordination polymers (CPs) based on 4-(4-oxopyridin-1(4H)-yl) and... Based on 4-(4-oxopyridin-1(4H)-yl) phthalic acid (H2L1) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid (H2L2), two novel Pb(II) coordination polymers (CPs) formulated as [Pb4Cl4·(L1)2·H2O]n (CP 1), [Pb3Cl4·L2·H2O]n (CP 2) were solvothermally synthesized and characterized by single-crystal X-ray diffraction. The two novel Pb(II) CPs (CPs 1 and 2) possessed different structures. Density functional theory (DFT) calculations revealed the two CPs had different band structures yet the characteristic of semiconductors in common. Their valence band (VB) and conduction band (CB) positions were determined by Mott-Schottky and UV–visible diffuse reflectance analyses. The photoelectrocatalytic performance of the two CPs towards CO2 reduction were tested by photocurrent responses at various applied potentials. And the E =−1.4 V vs SCE (−0.74 V vs NHE) was selected as the required potential according to the regulation of photocurrent responses at various tested potentials in CO2-saturated system. The photoelectrocatalytic performance of CP 2 was superior to that of CP 1 owing to the well-matched CB position of CP 2 and CO2 reduction potentials at the required potential of −1.4 V vs SCE (−0.74 V vs NHE). In addition, the photoelectrolytic experiment were performed 1 h in the CO2-saturated 0.2 M Na2SO4 solution at the required potential of −1.4 V vs SCE (−0.74 V vs NHE) with and without illumination, and we initially demonstrated the influence of visible light in the CO2-saturated photoelectrocatalytic measurement system and the reason of stability in 1 h chronoamperometry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Two novel Pb(II) coordination polymers (CPs) based on 4-(4-oxopyridin-1(4H)-yl) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid: Band gaps, structures, and their photoelectrocatalytic properties in CO2-saturated system

Loading next page...
 
/lp/elsevier/two-novel-pb-ii-coordination-polymers-cps-based-on-4-4-oxopyridin-1-4h-aPVu8QE0vH
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.02.011
Publisher site
See Article on Publisher Site

Abstract

Based on 4-(4-oxopyridin-1(4H)-yl) phthalic acid (H2L1) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid (H2L2), two novel Pb(II) coordination polymers (CPs) formulated as [Pb4Cl4·(L1)2·H2O]n (CP 1), [Pb3Cl4·L2·H2O]n (CP 2) were solvothermally synthesized and characterized by single-crystal X-ray diffraction. The two novel Pb(II) CPs (CPs 1 and 2) possessed different structures. Density functional theory (DFT) calculations revealed the two CPs had different band structures yet the characteristic of semiconductors in common. Their valence band (VB) and conduction band (CB) positions were determined by Mott-Schottky and UV–visible diffuse reflectance analyses. The photoelectrocatalytic performance of the two CPs towards CO2 reduction were tested by photocurrent responses at various applied potentials. And the E =−1.4 V vs SCE (−0.74 V vs NHE) was selected as the required potential according to the regulation of photocurrent responses at various tested potentials in CO2-saturated system. The photoelectrocatalytic performance of CP 2 was superior to that of CP 1 owing to the well-matched CB position of CP 2 and CO2 reduction potentials at the required potential of −1.4 V vs SCE (−0.74 V vs NHE). In addition, the photoelectrolytic experiment were performed 1 h in the CO2-saturated 0.2 M Na2SO4 solution at the required potential of −1.4 V vs SCE (−0.74 V vs NHE) with and without illumination, and we initially demonstrated the influence of visible light in the CO2-saturated photoelectrocatalytic measurement system and the reason of stability in 1 h chronoamperometry.

Journal

Journal of Solid State ChemistryElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial