Tribological behaviour of DLC coatings compared to different materials used in hip joint prostheses

Tribological behaviour of DLC coatings compared to different materials used in hip joint prostheses The goal of the study carried out in the laboratory was to quantify the wear and the friction of two materials used for the manufacturing of hip prostheses. Tests used had to obtain in a short time the tribological behaviour laws of the materials. Tests on a hip simulator have been excluded because their cost and their duration were too high for a program of preliminary development of new materials. To amplify wear phenomena, dry friction tests were carried out for two configurations: ball-on-disc and pin-on-disc. The influence of the contact pressure at constant sliding velocity on the wear of materials has been clearly shown. Results obtained with several different tested materials (stainless steel/UHMWPE, stainless steel+DLC coating/UHMWPE, stainless steel+DLC coating/stainless steel+DLC coating, titanium alloy+DLC coating/UHMWPE, titanium alloy+DLC coating/titanium alloy+DLC coating, zirconium dioxide/UHMWPE, alumina/UHMWPE, alumina/alumina) have shown the superiority of DLC coatings. Promising results obtained during this study are in the validation stage on a hip simulator. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wear Elsevier

Tribological behaviour of DLC coatings compared to different materials used in hip joint prostheses

Wear, Volume 250 (1) – Oct 1, 2001

Loading next page...
 
/lp/elsevier/tribological-behaviour-of-dlc-coatings-compared-to-different-materials-cdKBoFZRE5
Publisher
Elsevier
Copyright
Copyright © 2001 Elsevier Science B.V.
ISSN
0043-1648
eISSN
1873-2577
D.O.I.
10.1016/S0043-1648(01)00651-2
Publisher site
See Article on Publisher Site

Abstract

The goal of the study carried out in the laboratory was to quantify the wear and the friction of two materials used for the manufacturing of hip prostheses. Tests used had to obtain in a short time the tribological behaviour laws of the materials. Tests on a hip simulator have been excluded because their cost and their duration were too high for a program of preliminary development of new materials. To amplify wear phenomena, dry friction tests were carried out for two configurations: ball-on-disc and pin-on-disc. The influence of the contact pressure at constant sliding velocity on the wear of materials has been clearly shown. Results obtained with several different tested materials (stainless steel/UHMWPE, stainless steel+DLC coating/UHMWPE, stainless steel+DLC coating/stainless steel+DLC coating, titanium alloy+DLC coating/UHMWPE, titanium alloy+DLC coating/titanium alloy+DLC coating, zirconium dioxide/UHMWPE, alumina/UHMWPE, alumina/alumina) have shown the superiority of DLC coatings. Promising results obtained during this study are in the validation stage on a hip simulator.

Journal

WearElsevier

Published: Oct 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off