Transgenerational impairments of reproduction and development of the marine invertebrate Crepidula onyx resulted from long-term dietary exposure of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)

Transgenerational impairments of reproduction and development of the marine invertebrate... Polybrominated diphenyl ethers have become ubiquitous in the environment and elevated concentrations have often been found in marine organisms. Using the gastropod Crepidula onyx as a study model, this multigenerational study sets out to test the hypotheses that 1) parental dietary exposure to environmentally realistic levels of 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) would lead to transgenerational impairments on fitness traits of marine invertebrates, and 2) the organisms might develop adaptation/acclimation after exposure for one or more generations. F0 generation of C. onyx was fed with the dinoflagellate Isochrysis galbana encapsulated with two concentrations of BDE-47 (1.78 and 16.0 ng million cells−1, respectively), and half of the F1 offspring from the higher concentration treatment was returned to control condition (transgenerational group), while the other half received BDE-47 treatment continuously (continuous treatment group). Bioaccumulation and maternal transfer of BDE-47 were evident in all life stages of the F0 generation and in F1 eggs, respectively. Exposure to BDE-47 reduced fecundity, delayed sexual maturity, and impeded embryonic development in F0 to F2. In particular, developmental toxicity of F2 embryos was apparent in the transgenerational group, but not in the continuous treatment group, even when BDE-47 was not detected in the F2 embryos nor in their mothers and they have never been exposed to the chemical. This study also suggested that the offspring might have developed adaptation/acclimation to the exposure of BDE-47 within two generations of exposure, and that the physiological alterations associated with acclimation/adaptation might have hindered the normal larval development under a stress free condition. These findings highlighted the need for long-term multigenerational studies in the ecological risk assessment of chemicals alike. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Transgenerational impairments of reproduction and development of the marine invertebrate Crepidula onyx resulted from long-term dietary exposure of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)

Loading next page...
 
/lp/elsevier/transgenerational-impairments-of-reproduction-and-development-of-the-J03E3hHgDj
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.12.087
Publisher site
See Article on Publisher Site

Abstract

Polybrominated diphenyl ethers have become ubiquitous in the environment and elevated concentrations have often been found in marine organisms. Using the gastropod Crepidula onyx as a study model, this multigenerational study sets out to test the hypotheses that 1) parental dietary exposure to environmentally realistic levels of 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) would lead to transgenerational impairments on fitness traits of marine invertebrates, and 2) the organisms might develop adaptation/acclimation after exposure for one or more generations. F0 generation of C. onyx was fed with the dinoflagellate Isochrysis galbana encapsulated with two concentrations of BDE-47 (1.78 and 16.0 ng million cells−1, respectively), and half of the F1 offspring from the higher concentration treatment was returned to control condition (transgenerational group), while the other half received BDE-47 treatment continuously (continuous treatment group). Bioaccumulation and maternal transfer of BDE-47 were evident in all life stages of the F0 generation and in F1 eggs, respectively. Exposure to BDE-47 reduced fecundity, delayed sexual maturity, and impeded embryonic development in F0 to F2. In particular, developmental toxicity of F2 embryos was apparent in the transgenerational group, but not in the continuous treatment group, even when BDE-47 was not detected in the F2 embryos nor in their mothers and they have never been exposed to the chemical. This study also suggested that the offspring might have developed adaptation/acclimation to the exposure of BDE-47 within two generations of exposure, and that the physiological alterations associated with acclimation/adaptation might have hindered the normal larval development under a stress free condition. These findings highlighted the need for long-term multigenerational studies in the ecological risk assessment of chemicals alike.

Journal

Environmental PollutionElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off