Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity

Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity Accumulation of dysfunctional white adipose tissues increases risks for cardiometabolic diseases in obesity. In addition to white, brown or brite adipose tissues are also present in adult humans and increasing their amount may be protective. Therefore, understanding factors regulating the amount and function of each adipose depot is crucial for developing therapeutic targets for obesity and its associated metabolic diseases. The transforming growth factor beta (TGFβ) superfamily, which consists of TGFβ, BMPs, GDFs, and activins, controls multiple aspects of adipose biology. This review focuses on the recent development in understanding the role of TGFβ superfamily in the regulation of white, brite and brown adipocyte differentiation, adipose tissue fibrosis, and adipocyte metabolic and endocrine functions. TGFβ family and their antagonists are produced locally within adipose tissues and their expression levels are altered in obesity. We also discuss their potential contribution to adipose tissue dysfunction in obesity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease Elsevier

Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity

Loading next page...
 
/lp/elsevier/transforming-growth-factor-beta-superfamily-regulation-of-adipose-u7PijrbwLI
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0925-4439
D.O.I.
10.1016/j.bbadis.2018.01.025
Publisher site
See Article on Publisher Site

Abstract

Accumulation of dysfunctional white adipose tissues increases risks for cardiometabolic diseases in obesity. In addition to white, brown or brite adipose tissues are also present in adult humans and increasing their amount may be protective. Therefore, understanding factors regulating the amount and function of each adipose depot is crucial for developing therapeutic targets for obesity and its associated metabolic diseases. The transforming growth factor beta (TGFβ) superfamily, which consists of TGFβ, BMPs, GDFs, and activins, controls multiple aspects of adipose biology. This review focuses on the recent development in understanding the role of TGFβ superfamily in the regulation of white, brite and brown adipocyte differentiation, adipose tissue fibrosis, and adipocyte metabolic and endocrine functions. TGFβ family and their antagonists are produced locally within adipose tissues and their expression levels are altered in obesity. We also discuss their potential contribution to adipose tissue dysfunction in obesity.

Journal

Biochimica et Biophysica Acta (BBA) - Molecular Basis of DiseaseElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off