Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults

Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults Development of stress markers for the invader freshwater zebra mussel (Dreissena polymorpha) is of great interest for both conservation and biomonitoring purposes. Gene expression profiles of several putative or already established gene expression stress markers (Metallothionein, Superoxide dismutase, Catalase, Glutathione S transferase, Glutathione peroxidase, Cytochrome c oxidase, the multixenobiotic resistance P-gp1, and heat shock proteins HSP70 and HSP90) were analyzed by quantitative Real-Time PCR in adults and pediveliger larvae after exposure to metals (Hg, Cu, Cd). A defined pattern of coordinated responses to metal exposure and, presumably, to oxidative stress was observed in gills and digestive gland from adults. A similar, albeit partial response was observed in larvae, indicating an early development of stress-related gene responses in zebra mussel. The tools developed in this study may be useful both for future control strategies and for the use of zebra mussel as sentinel species in water courses with stable populations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults

Loading next page...
 
/lp/elsevier/transcriptional-response-of-stress-genes-to-metal-exposure-in-zebra-5S3ygbQHVb
Publisher
Elsevier
Copyright
Copyright © 2010 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2010.09.018
Publisher site
See Article on Publisher Site

Abstract

Development of stress markers for the invader freshwater zebra mussel (Dreissena polymorpha) is of great interest for both conservation and biomonitoring purposes. Gene expression profiles of several putative or already established gene expression stress markers (Metallothionein, Superoxide dismutase, Catalase, Glutathione S transferase, Glutathione peroxidase, Cytochrome c oxidase, the multixenobiotic resistance P-gp1, and heat shock proteins HSP70 and HSP90) were analyzed by quantitative Real-Time PCR in adults and pediveliger larvae after exposure to metals (Hg, Cu, Cd). A defined pattern of coordinated responses to metal exposure and, presumably, to oxidative stress was observed in gills and digestive gland from adults. A similar, albeit partial response was observed in larvae, indicating an early development of stress-related gene responses in zebra mussel. The tools developed in this study may be useful both for future control strategies and for the use of zebra mussel as sentinel species in water courses with stable populations.

Journal

Environmental PollutionElsevier

Published: Jan 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off