Transcriptional and cellular effects of paracetamol in the oyster Crassostrea gigas

Transcriptional and cellular effects of paracetamol in the oyster Crassostrea gigas Acetaminophen (paracetamol) (PAR) is one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) with analgesic and antipyretic properties consumed worldwide and often detected in the aquatic environment. Due to the fact that PAR induces oxidative stress in mammals, the aim of this study was to evaluate if similar effects were observed in oysters Crassostrea gigas, given their economic and ecological importance and worldwide distribution. Oysters were exposed for 1, 4 and 7 days to two different sublethal PAR concentrations (0, 1 and 100μgL−1). Cell viability, DNA damage in hemocytes and enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and glutathione S-transferases (GST) were evaluated in oyster gills. In addition, changes at transcriptional level of Cu/Zn superoxide dismutase (SOD), catalase-like (CAT-like), cytochrome P450 genes (CYP30C1, CYP2AU2, CYP3071A1, CYP356A1), glutathione S-transferase isoforms (GST-ω and GST-π-like), cyclooxygenase (COX), fatty acid binding proteins-like (FABP-like), and caspase genes were evaluated in oyster gills and digestive gland. No changes in cell viability and DNA damage were observed in oysters exposed to both PAR concentrations. Similarly, no significant changes were detected in the major antioxidant enzymes (except for auxiliary enzyme GR) in oyster gills, suggesting that changes in GR activity are enough to counteract a potential oxidative stress in C. gigas gills under these experimental conditions. Furthermore, changes at transcriptional level are concentration and tissue dependent. PAR elicited an inhibition of CYP30C1, CYP3071A1 and FABP-like transcripts highlighting their role in drug metabolism, transport and detoxification of PAR in the gills. GST transcript levels were type, tissue and concentration-dependent. GST-π-like was down-regulated in oyster gills exposed to the lowest PAR concentration and up-regulated in the digestive gland of oysters exposed to the highest PAR concentration. However, GST-ω transcript levels were lower only in oysters digestive gland exposed to the lowest PAR concentration. Therefore, changes at transcriptional level were more sensitive to assess the exposure to PAR at environmental relevant concentrations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Loading next page...
 
/lp/elsevier/transcriptional-and-cellular-effects-of-paracetamol-in-the-oyster-eYKnuLGPl3
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2017.06.034
Publisher site
See Article on Publisher Site

Abstract

Acetaminophen (paracetamol) (PAR) is one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) with analgesic and antipyretic properties consumed worldwide and often detected in the aquatic environment. Due to the fact that PAR induces oxidative stress in mammals, the aim of this study was to evaluate if similar effects were observed in oysters Crassostrea gigas, given their economic and ecological importance and worldwide distribution. Oysters were exposed for 1, 4 and 7 days to two different sublethal PAR concentrations (0, 1 and 100μgL−1). Cell viability, DNA damage in hemocytes and enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and glutathione S-transferases (GST) were evaluated in oyster gills. In addition, changes at transcriptional level of Cu/Zn superoxide dismutase (SOD), catalase-like (CAT-like), cytochrome P450 genes (CYP30C1, CYP2AU2, CYP3071A1, CYP356A1), glutathione S-transferase isoforms (GST-ω and GST-π-like), cyclooxygenase (COX), fatty acid binding proteins-like (FABP-like), and caspase genes were evaluated in oyster gills and digestive gland. No changes in cell viability and DNA damage were observed in oysters exposed to both PAR concentrations. Similarly, no significant changes were detected in the major antioxidant enzymes (except for auxiliary enzyme GR) in oyster gills, suggesting that changes in GR activity are enough to counteract a potential oxidative stress in C. gigas gills under these experimental conditions. Furthermore, changes at transcriptional level are concentration and tissue dependent. PAR elicited an inhibition of CYP30C1, CYP3071A1 and FABP-like transcripts highlighting their role in drug metabolism, transport and detoxification of PAR in the gills. GST transcript levels were type, tissue and concentration-dependent. GST-π-like was down-regulated in oyster gills exposed to the lowest PAR concentration and up-regulated in the digestive gland of oysters exposed to the highest PAR concentration. However, GST-ω transcript levels were lower only in oysters digestive gland exposed to the lowest PAR concentration. Therefore, changes at transcriptional level were more sensitive to assess the exposure to PAR at environmental relevant concentrations.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off