Tracking major endocrine disruptors in coastal waters using an integrative approach coupling field-based study and hydrodynamic modeling

Tracking major endocrine disruptors in coastal waters using an integrative approach coupling... Many of the world's large coastal cities discharge partially treated wastewater effluents containing various endocrine disrupting chemicals (EDCs) to coastal environments. Nonylphenols (NP) and bisphenol A (BPA) were found to be the most abundant EDCs in sewage effluents in Hong Kong. The environmental fate and ecological risk of these two EDCs remains largely unknown, particular for coastal systems with complex hydrodynamic flows. Based on a validated three-dimensional (3D) multiple-scale hydrodynamic model, a field-based study was conducted to track the two EDCs from potential sources to the only marine reserve in Hong Kong. The two compounds were detected in all seawater, suspended particle, and sediment samples, with higher aqueous concentrations in wet season than in dry season. High concentrations in sediments suggest sediment is a sink, posing an ecological risk to the benthos. The fate and transport of the two EDCs was predicted using a 3D near-field Lagrangian jet model seamlessly coupled with a 3D shallow water circulation model. The results suggested the NP and BPA in the marine reserve cannot be solely attributed to the nearby submarine sewage outfall, but likely concurrently contributed by other sources. This study calls for more effective measures of reducing the use and release of these EDCs, and research to investigate their impacts on the marine benthos. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Tracking major endocrine disruptors in coastal waters using an integrative approach coupling field-based study and hydrodynamic modeling

Loading next page...
 
/lp/elsevier/tracking-major-endocrine-disruptors-in-coastal-waters-using-an-uvCv40gJ9s
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.10.086
Publisher site
See Article on Publisher Site

Abstract

Many of the world's large coastal cities discharge partially treated wastewater effluents containing various endocrine disrupting chemicals (EDCs) to coastal environments. Nonylphenols (NP) and bisphenol A (BPA) were found to be the most abundant EDCs in sewage effluents in Hong Kong. The environmental fate and ecological risk of these two EDCs remains largely unknown, particular for coastal systems with complex hydrodynamic flows. Based on a validated three-dimensional (3D) multiple-scale hydrodynamic model, a field-based study was conducted to track the two EDCs from potential sources to the only marine reserve in Hong Kong. The two compounds were detected in all seawater, suspended particle, and sediment samples, with higher aqueous concentrations in wet season than in dry season. High concentrations in sediments suggest sediment is a sink, posing an ecological risk to the benthos. The fate and transport of the two EDCs was predicted using a 3D near-field Lagrangian jet model seamlessly coupled with a 3D shallow water circulation model. The results suggested the NP and BPA in the marine reserve cannot be solely attributed to the nearby submarine sewage outfall, but likely concurrently contributed by other sources. This study calls for more effective measures of reducing the use and release of these EDCs, and research to investigate their impacts on the marine benthos.

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off