Trace evidence characteristics of DNA: A preliminary investigation of the persistence of DNA at crime scenes

Trace evidence characteristics of DNA: A preliminary investigation of the persistence of DNA at... The successful recovery of trace or contact DNA is highly variable. It is seemingly dependent on a wide range of factors, from the characteristics of the donor, substrate and environment, to the delay between contact and recovery. There is limited research on the extent of the effect these factors have on trace DNA analysis. This study investigated the persistence of trace DNA on surfaces relevant to the investigation of burglary and robbery offences. The study aimed to limit the number of variables involved to solely determine the effect of time on DNA recovery. Given that it is difficult to control the quantity of DNA deposited during a hand contact, human buffy coat and DNA control solution were chosen as an alternative to give a more accurate measure of quantity. Set volumes of these solutions were deposited onto outdoor surfaces (window frames and vinyl material to mimic burglary and ‘bag snatch’ offences) and sterile glass slides stored in a closed environment in the laboratory, for use as a control. Trace DNA casework data was also scrutinised to assess the effect of time on DNA recovery from real samples. The amount of DNA recovered from buffy coat on the outdoor surfaces declined by approximately half over two weeks, to a negligible amount after six weeks. Profiles could not be obtained after two weeks. The samples stored in the laboratory were more robust, and full profiles were obtained after six weeks, the longest time period tested in these experiments. It is possible that profiles may be obtained from older samples when kept in similarly favourable conditions. The experimental results demonstrate that the ability to recover DNA from human cells on outdoor surfaces decreases significantly over two weeks. Conversely, no clear trends were identified in the casework data, indicating that many other factors are involved affecting the recovery of trace DNA. Nevertheless, to ensure that valuable trace evidence is not lost, it is recommended that crime scenes are processed expeditiously. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Forensic Science International: Genetics Elsevier

Trace evidence characteristics of DNA: A preliminary investigation of the persistence of DNA at crime scenes

Loading next page...
 
/lp/elsevier/trace-evidence-characteristics-of-dna-a-preliminary-investigation-of-cDjmR04tRo
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier Ltd
ISSN
1872-4973
eISSN
1878-0326
D.O.I.
10.1016/j.fsigen.2009.04.002
Publisher site
See Article on Publisher Site

Abstract

The successful recovery of trace or contact DNA is highly variable. It is seemingly dependent on a wide range of factors, from the characteristics of the donor, substrate and environment, to the delay between contact and recovery. There is limited research on the extent of the effect these factors have on trace DNA analysis. This study investigated the persistence of trace DNA on surfaces relevant to the investigation of burglary and robbery offences. The study aimed to limit the number of variables involved to solely determine the effect of time on DNA recovery. Given that it is difficult to control the quantity of DNA deposited during a hand contact, human buffy coat and DNA control solution were chosen as an alternative to give a more accurate measure of quantity. Set volumes of these solutions were deposited onto outdoor surfaces (window frames and vinyl material to mimic burglary and ‘bag snatch’ offences) and sterile glass slides stored in a closed environment in the laboratory, for use as a control. Trace DNA casework data was also scrutinised to assess the effect of time on DNA recovery from real samples. The amount of DNA recovered from buffy coat on the outdoor surfaces declined by approximately half over two weeks, to a negligible amount after six weeks. Profiles could not be obtained after two weeks. The samples stored in the laboratory were more robust, and full profiles were obtained after six weeks, the longest time period tested in these experiments. It is possible that profiles may be obtained from older samples when kept in similarly favourable conditions. The experimental results demonstrate that the ability to recover DNA from human cells on outdoor surfaces decreases significantly over two weeks. Conversely, no clear trends were identified in the casework data, indicating that many other factors are involved affecting the recovery of trace DNA. Nevertheless, to ensure that valuable trace evidence is not lost, it is recommended that crime scenes are processed expeditiously.

Journal

Forensic Science International: GeneticsElsevier

Published: Dec 1, 2009

References

  • DNA fingerprints from fingerprints
    Van Oorschot, R.A.; Jones, M.
  • Criminal DNA databases: the European situation
    Schneider, P.M.; Martin, P.D.
  • Forensic Interpretation of Glass Evidence
    Curran, J.M.; Hicks, T.N.; Buckleton, J.S.
  • The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces
    Lowe, A.; Murray, C.; Whitaker, J.; Tully, G.; Gill, P.
  • The tendency of individuals to transfer DNA to handled items
    Phipps, M.; Petricevic, S.F.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off