Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity

Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity Dyes are widely distributed worldwide, and can be found in wastewaters resulting from industrial or urban effluents. Dyes are of particular concern as contaminants of the aquatic environment, since their toxicity remain poorly understood. Thus, the current study was designed to assess the effects induced by the synthetic azo dye Basic Red 51 (BR51) and by the natural naphthoquinone dye erythrostominone (ERY) on zebrafish early life stages (Danio rerio) at different biological organization levels, i.e., studying how changes in biochemical parameters of important physiological functions (neurotransmission and cellular energy allocation) may be associated with behavior alterations (swimming activity). This approach was also used to assess the effects of ERY after its photodegradation resulting in a colorless product(s) (DERY). Results showed that after 96 h exposure to BR51 and Ery, zebrafish embryos consumed less energy (LOEC = 7.5 mg/L), despite the unaltered levels of available energy (carbohydrates, lipids and proteins). Hence, cellular energy allocation (CEA) was significantly increased. On the other hand, only ERY decreased the acetylcholinesterase activity (LOEC = 15 mg/L). Despite that, zebrafish larvae exposed to both dyes until 144 h were less active. In contrast, DERY did not affect any parameter measured. These results indicate an association between a decrease consumption of energy and decrease swimming activity resulting from an environmental stress condition, independently of the neurotoxicity of the dyes. Degradation of ERY by light prevented all toxic effects previously observed, suggesting a cheap, fast and easy alternative treatment of effluents containing this natural dye. All tools assessed in our current study were sensitive as early-warning endpoints of dyes toxicity on zebrafish early life stages, and suggest that the CEA assay might be useful to predict effects on locomotor activity when cholinergic damage is absent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity

Loading next page...
 
/lp/elsevier/toxicity-of-dyes-to-zebrafish-at-the-biochemical-level-cellular-energy-iaW8JiiLTr
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.12.020
Publisher site
See Article on Publisher Site

Abstract

Dyes are widely distributed worldwide, and can be found in wastewaters resulting from industrial or urban effluents. Dyes are of particular concern as contaminants of the aquatic environment, since their toxicity remain poorly understood. Thus, the current study was designed to assess the effects induced by the synthetic azo dye Basic Red 51 (BR51) and by the natural naphthoquinone dye erythrostominone (ERY) on zebrafish early life stages (Danio rerio) at different biological organization levels, i.e., studying how changes in biochemical parameters of important physiological functions (neurotransmission and cellular energy allocation) may be associated with behavior alterations (swimming activity). This approach was also used to assess the effects of ERY after its photodegradation resulting in a colorless product(s) (DERY). Results showed that after 96 h exposure to BR51 and Ery, zebrafish embryos consumed less energy (LOEC = 7.5 mg/L), despite the unaltered levels of available energy (carbohydrates, lipids and proteins). Hence, cellular energy allocation (CEA) was significantly increased. On the other hand, only ERY decreased the acetylcholinesterase activity (LOEC = 15 mg/L). Despite that, zebrafish larvae exposed to both dyes until 144 h were less active. In contrast, DERY did not affect any parameter measured. These results indicate an association between a decrease consumption of energy and decrease swimming activity resulting from an environmental stress condition, independently of the neurotoxicity of the dyes. Degradation of ERY by light prevented all toxic effects previously observed, suggesting a cheap, fast and easy alternative treatment of effluents containing this natural dye. All tools assessed in our current study were sensitive as early-warning endpoints of dyes toxicity on zebrafish early life stages, and suggest that the CEA assay might be useful to predict effects on locomotor activity when cholinergic damage is absent.

Journal

Environmental PollutionElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off