Towards environmentally friendly Na-ion batteries: Moisture and water stability of Na2Ti3O7

Towards environmentally friendly Na-ion batteries: Moisture and water stability of Na2Ti3O7 We report here on the moisture and water stability of the promising Na-ion anode material Na2Ti3O7. Spontaneous Na+/H+ exchange is detected by PXRD after air exposure, forming solid solution compounds of the form Na2−xHxTi3O7 (0 < x < 2). By controlled ion exchange in aqueous solution two mixed compositions are prepared and their composition and structure are characterized with a panel of techniques. Both mixed compositions crystallize in C2/m space group like H2Ti3O7, and therefore Na+/H+ exchange is found to involve a structural transition from AA stacking of [TiO6] layers to AB stacking sequence. The electrochemical behaviour of the mixed compositions vs. Na+/Na is studied as well as that of an electrode of pure Na2Ti3O7 prepared in water media. The water-processed electrode is shown to exhibit a superior cycling stability and therefore the results obtained highlight the potential of Na2Ti3O7 as a green, low cost anode material for NIBs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Towards environmentally friendly Na-ion batteries: Moisture and water stability of Na2Ti3O7

Loading next page...
 
/lp/elsevier/towards-environmentally-friendly-na-ion-batteries-moisture-and-water-YJFxy2xJaR
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.103
Publisher site
See Article on Publisher Site

Abstract

We report here on the moisture and water stability of the promising Na-ion anode material Na2Ti3O7. Spontaneous Na+/H+ exchange is detected by PXRD after air exposure, forming solid solution compounds of the form Na2−xHxTi3O7 (0 < x < 2). By controlled ion exchange in aqueous solution two mixed compositions are prepared and their composition and structure are characterized with a panel of techniques. Both mixed compositions crystallize in C2/m space group like H2Ti3O7, and therefore Na+/H+ exchange is found to involve a structural transition from AA stacking of [TiO6] layers to AB stacking sequence. The electrochemical behaviour of the mixed compositions vs. Na+/Na is studied as well as that of an electrode of pure Na2Ti3O7 prepared in water media. The water-processed electrode is shown to exhibit a superior cycling stability and therefore the results obtained highlight the potential of Na2Ti3O7 as a green, low cost anode material for NIBs.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off