Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes

Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive... Although the LiNi0.5Mn0.25Co0.25O2 holds the merits of high theoretical capacities and a relatively high operating voltage, the battery performance suffers from the severe cycling decay due to the unstable solid electrolyte interface on the cathode. Herein, we present LiPO2F2 as a salt-type electrolyte additive to enhance the cycling stability of large-size crystallite LiNi0.5Mn0.25Co0.25O2 cathodes. Results demonstrate that 1 wt% LiPO2F2 can significantly improve not only the initial coulombic efficiency by 3%, but also the cycling stability and rate capability at 25 °C. Furthermore, the discharge capacity of LiNi0.5Mn0.25Co0.25O2 cathodes still maintain 156 mAh g−1 after 100 cycles even when the temperature increases to 55 °C. In-depth experimental characterization and theoretical calculation indicate that a new stable and thin (e.g. 15–20 nm) film formed on the surface of the cathodes, with composition of LiPO2F2, LiF, etc., which significantly reduces charge transfer impedance of the electrodes, and therefore significantly improves the cycling and rate performance of LiNi0.5Mn0.25Co0.25O2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes

Loading next page...
 
/lp/elsevier/toward-a-stable-solid-electrolyte-interfaces-on-nickel-rich-cathodes-zoH4ytIfGH
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2018.01.041
Publisher site
See Article on Publisher Site

Abstract

Although the LiNi0.5Mn0.25Co0.25O2 holds the merits of high theoretical capacities and a relatively high operating voltage, the battery performance suffers from the severe cycling decay due to the unstable solid electrolyte interface on the cathode. Herein, we present LiPO2F2 as a salt-type electrolyte additive to enhance the cycling stability of large-size crystallite LiNi0.5Mn0.25Co0.25O2 cathodes. Results demonstrate that 1 wt% LiPO2F2 can significantly improve not only the initial coulombic efficiency by 3%, but also the cycling stability and rate capability at 25 °C. Furthermore, the discharge capacity of LiNi0.5Mn0.25Co0.25O2 cathodes still maintain 156 mAh g−1 after 100 cycles even when the temperature increases to 55 °C. In-depth experimental characterization and theoretical calculation indicate that a new stable and thin (e.g. 15–20 nm) film formed on the surface of the cathodes, with composition of LiPO2F2, LiF, etc., which significantly reduces charge transfer impedance of the electrodes, and therefore significantly improves the cycling and rate performance of LiNi0.5Mn0.25Co0.25O2.

Journal

Journal of Power SourcesElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off