To the design of highly fracture-resistant composites by the application of the yield stress inhomogeneity effect

To the design of highly fracture-resistant composites by the application of the yield stress... Improvement of the fracture toughness by the introduction of thin, soft interlayers is investigated. The mechanism is the strong decrease of the crack driving force when the crack tip is located in the soft region. Based on numerical simulations with the configurational forces concept, it is demonstrated that the fracture toughness of brittle materials can be greatly improved by the introduction of soft interlayers, if the architectural parameters of the multilayer are appropriately chosen. The findings are compared to experimental results of fracture tests conducted on compounds made of high-strength steel as matrix and low-strength steel as interlayer material. The design concept presented in this paper can be applied for various types of composite materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

To the design of highly fracture-resistant composites by the application of the yield stress inhomogeneity effect

Loading next page...
 
/lp/elsevier/to-the-design-of-highly-fracture-resistant-composites-by-the-eAI7xvkPlP
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.10.081
Publisher site
See Article on Publisher Site

Abstract

Improvement of the fracture toughness by the introduction of thin, soft interlayers is investigated. The mechanism is the strong decrease of the crack driving force when the crack tip is located in the soft region. Based on numerical simulations with the configurational forces concept, it is demonstrated that the fracture toughness of brittle materials can be greatly improved by the introduction of soft interlayers, if the architectural parameters of the multilayer are appropriately chosen. The findings are compared to experimental results of fracture tests conducted on compounds made of high-strength steel as matrix and low-strength steel as interlayer material. The design concept presented in this paper can be applied for various types of composite materials.

Journal

Composite StructuresElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off