TMT-based quantitative proteomics analysis reveals the response of tea plant (Camellia sinensis) to fluoride

TMT-based quantitative proteomics analysis reveals the response of tea plant (Camellia sinensis)... The tea plant is a fluoride hyperaccumulator, and fluoride accumulation in its leaves is closely related to human health. To dissect molecular mechanisms underlying fluoride accumulation/detoxification, the leaves of tea seedlings exposed to different fluoride treatments for 30 days were sampled for physiological and proteomics analyses. The results showed that fluoride had no adverse effects on the growth of tea seedlings in spite of high content fluoride accumulation in their leaves. Through TMT coupled with UPLC MS/MS, 189 differentially accumulated proteins were quantified, of which 41 and 148 were localized in the cell wall and cellular compartments respectively. 41 cell wall proteins were mainly conductive to cell wall structure rearrangement, signaling modulation and the protection cells from damages; 148 cellular compartments proteins mainly contributed to diverse metabolisms reprogramming, energy reallocation and plant defense. Notably, upregulation of several proteins including GHs, smHSPs, DRT100, YLS2-like, primary amine oxidase, GDSL esterase/lipases and citrate synthase probably enhanced the defense of tea seedlings against fluoride. Collectively, our results presented a comprehensive proteomics analysis on the leaves of tea seedlings in response to fluoride, which would contribute to further deciphering of molecular mechanisms underlying fluoride accumulation/detoxification in tea plant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Proteomics Elsevier

TMT-based quantitative proteomics analysis reveals the response of tea plant (Camellia sinensis) to fluoride

Loading next page...
 
/lp/elsevier/tmt-based-quantitative-proteomics-analysis-reveals-the-response-of-tea-7FPx05ZPgB
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
1874-3919
eISSN
1876-7737
D.O.I.
10.1016/j.jprot.2018.02.001
Publisher site
See Article on Publisher Site

Abstract

The tea plant is a fluoride hyperaccumulator, and fluoride accumulation in its leaves is closely related to human health. To dissect molecular mechanisms underlying fluoride accumulation/detoxification, the leaves of tea seedlings exposed to different fluoride treatments for 30 days were sampled for physiological and proteomics analyses. The results showed that fluoride had no adverse effects on the growth of tea seedlings in spite of high content fluoride accumulation in their leaves. Through TMT coupled with UPLC MS/MS, 189 differentially accumulated proteins were quantified, of which 41 and 148 were localized in the cell wall and cellular compartments respectively. 41 cell wall proteins were mainly conductive to cell wall structure rearrangement, signaling modulation and the protection cells from damages; 148 cellular compartments proteins mainly contributed to diverse metabolisms reprogramming, energy reallocation and plant defense. Notably, upregulation of several proteins including GHs, smHSPs, DRT100, YLS2-like, primary amine oxidase, GDSL esterase/lipases and citrate synthase probably enhanced the defense of tea seedlings against fluoride. Collectively, our results presented a comprehensive proteomics analysis on the leaves of tea seedlings in response to fluoride, which would contribute to further deciphering of molecular mechanisms underlying fluoride accumulation/detoxification in tea plant.

Journal

Journal of ProteomicsElsevier

Published: Mar 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off