Time-resolved PIV measurements of the interaction of polystyrene beads with near-wall-coherent structures in a turbulent channel flow

Time-resolved PIV measurements of the interaction of polystyrene beads with near-wall-coherent... Time-resolved PIV measurements were performed in a dilute particle-laden flow tracking near-neutrally buoyant polystyrene beads and the velocity field of a near wall turbulent boundary layer. Data were taken in a vertical light sheet aligned in the streamwise direction at the center of a horizontal, closed loop, transparent square water channel facility. In addition, low speed measurements were performed characterizing the effects of the dispersed phase on mean and turbulence flow quantities. Reynolds shear stress slightly differed from clear water conditions whereas fluid mean and rms values were not affected. A case study for several beads revealed a clear relation between their movement and near-wall coherent structures. Several structures having 2D vorticity signatures of near-wall hairpin vortices and hairpin packets, directly affected bead movement. A statistical analysis showed that the mean streamwise velocity of ascending beads lagged behind the mean fluid velocity and bead rms values were higher than fluid ones. Particle Reynolds numbers based on the magnitude of the instantaneous relative velocity vector peaked near the wall; values not exceeding 100, too low for vortex shedding to occur. Quadrant analysis showed a clear preference for ascending beads to reside in ejections while for descending beads the preference for sweeps was less. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Multiphase Flow Elsevier

Time-resolved PIV measurements of the interaction of polystyrene beads with near-wall-coherent structures in a turbulent channel flow

Loading next page...
 
/lp/elsevier/time-resolved-piv-measurements-of-the-interaction-of-polystyrene-beads-1sCinm6BrK
Publisher
Elsevier
Copyright
Copyright © 2010 Elsevier Ltd
ISSN
0301-9322
D.O.I.
10.1016/j.ijmultiphaseflow.2010.11.004
Publisher site
See Article on Publisher Site

Abstract

Time-resolved PIV measurements were performed in a dilute particle-laden flow tracking near-neutrally buoyant polystyrene beads and the velocity field of a near wall turbulent boundary layer. Data were taken in a vertical light sheet aligned in the streamwise direction at the center of a horizontal, closed loop, transparent square water channel facility. In addition, low speed measurements were performed characterizing the effects of the dispersed phase on mean and turbulence flow quantities. Reynolds shear stress slightly differed from clear water conditions whereas fluid mean and rms values were not affected. A case study for several beads revealed a clear relation between their movement and near-wall coherent structures. Several structures having 2D vorticity signatures of near-wall hairpin vortices and hairpin packets, directly affected bead movement. A statistical analysis showed that the mean streamwise velocity of ascending beads lagged behind the mean fluid velocity and bead rms values were higher than fluid ones. Particle Reynolds numbers based on the magnitude of the instantaneous relative velocity vector peaked near the wall; values not exceeding 100, too low for vortex shedding to occur. Quadrant analysis showed a clear preference for ascending beads to reside in ejections while for descending beads the preference for sweeps was less.

Journal

International Journal of Multiphase FlowElsevier

Published: May 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off