Thyroid-associated ophthalmopathy (TAO) is an autoimmune disease. Studies showed that T helper 1 (Th1), Th2, and Th17 cells play important roles in the pathology of TAO. Tim-3 and its only known ligand Galectin-9 (Gal-9) is related to the suppression of Th1 and Th17 cytokine secretion. This study aims to investigate the role of Tim3/Gal-9 in the inflammatory response of TAO. In this study, the levels of Tim3, Gal-9, and cytokines of Th1 (TNF-α and IFN-γ), Th2 (IL-4), and Th17 (IL-17) cells were analyzed in the blood samples of TAO patients and healthy controls as well as in orbital fibroblasts. Tim3 overexpression and Gal-9 neutralizing antibody were used in TAO and LPS-stimulated control orbital fibroblasts to further investigate the role and mechanism of Tim3/Gal-9 on the inflammation of TAO. We found Tim3 and Gal-9 expression was significantly downregulated in TAO patients and further lower in active TAO than inactive TAO or controls. Th1, Th2, and Th17 cytokines were all increased in TAO patients. Th1 and Th17 cytokines were higher in active TAO patients than in inactive TAO patients, while Th2 cytokines were enhanced in inactive TAO. Tim3 overexpression decreased the levels of Th1 and Th17 cytokines, but not Th2 cytokine in TAO or LPS-stimulated control orbital fibroblasts. These effects were abrogated by Gal-9 neutralizing antibody. Moreover, Tim3 reduced the levels of p-Akt and p-p65 in TAO or LPS-induced control orbital fibroblasts that were reversed by Gal-9 blocking. In conclusion, Tim3/Gal-9 alleviates the inflammation of TAO patients via suppressing Akt/NF-κB signaling pathway.
Biochemical and Biophysical Research Communications – Elsevier
Published: Sep 30, 2017
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue