Three interval thixotropy test to determine structural regeneration of a glucomannan based hydrocolloid film at air/water interface: Interfacial, molecular, thermal and surface characterization

Three interval thixotropy test to determine structural regeneration of a glucomannan based... This work appears to be the first example with respect to two points: First, a film from salep, a glucomannan based hydrocolloid was formed and characterized in terms of interfacial properties. Second, three interval thixotropy test (3ITT) was applied to determine effect of instant interfacial shear stress or shear rate on deformation and regeneration of salep glucomannan (SG) films at air/water interface. In order to assess the interfacial properties, the salep from which SG films was formed was also characterized in terms of compositional, molecular, thermal and surface properties. To determine interfacial properties, the SG films prepared at different concentrations (2–3%) were formed at the water/air interface. Amplitude and frequency sweeps were applied to characterize the structure of the films at equilibrium, revealing a gel-like structure of the SG films at equilibrium. 3ITT revealed that shear rate/stress levels at different concentrations resulted in a remarkable deformation in SG films whereas they were fully recoverable, showing regeneration after distortion by a steady shear flow, as demonstrated by decreasing deformation percentage (Dr) values and increasing time required for the recovery (Rtime) values at increasing concentrations. 3ITT appeared to be an effective tool to simulate and analyze effects of real pumping, mixing and instant stirring processes during production and handling steps of SG films. The SG films were proven to have improved interfacial properties, which suggests that they may be an alternative to other hydrocolloid based films in terms of adsorbing onto air-water interfaces to reduce surface and interfacial tensions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Hydrocolloids Elsevier

Three interval thixotropy test to determine structural regeneration of a glucomannan based hydrocolloid film at air/water interface: Interfacial, molecular, thermal and surface characterization

Loading next page...
 
/lp/elsevier/three-interval-thixotropy-test-to-determine-structural-regeneration-of-pEOWhSkUze
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0268-005X
eISSN
1873-7137
D.O.I.
10.1016/j.foodhyd.2016.06.004
Publisher site
See Article on Publisher Site

Abstract

This work appears to be the first example with respect to two points: First, a film from salep, a glucomannan based hydrocolloid was formed and characterized in terms of interfacial properties. Second, three interval thixotropy test (3ITT) was applied to determine effect of instant interfacial shear stress or shear rate on deformation and regeneration of salep glucomannan (SG) films at air/water interface. In order to assess the interfacial properties, the salep from which SG films was formed was also characterized in terms of compositional, molecular, thermal and surface properties. To determine interfacial properties, the SG films prepared at different concentrations (2–3%) were formed at the water/air interface. Amplitude and frequency sweeps were applied to characterize the structure of the films at equilibrium, revealing a gel-like structure of the SG films at equilibrium. 3ITT revealed that shear rate/stress levels at different concentrations resulted in a remarkable deformation in SG films whereas they were fully recoverable, showing regeneration after distortion by a steady shear flow, as demonstrated by decreasing deformation percentage (Dr) values and increasing time required for the recovery (Rtime) values at increasing concentrations. 3ITT appeared to be an effective tool to simulate and analyze effects of real pumping, mixing and instant stirring processes during production and handling steps of SG films. The SG films were proven to have improved interfacial properties, which suggests that they may be an alternative to other hydrocolloid based films in terms of adsorbing onto air-water interfaces to reduce surface and interfacial tensions.

Journal

Food HydrocolloidsElsevier

Published: Dec 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off