The use of inline high-shear rotor-stator mixing for preparation of high-solids milk protein-stabilised oil-in-water emulsions with different protein:fat ratios

The use of inline high-shear rotor-stator mixing for preparation of high-solids milk... The emulsification of refined palm oil (RPO) in a continuous phase consisting of skim milk concentrate (SMC) and maltodextrin with a dextrose equivalent value of 17 (MD17) to produce fat-filled milk emulsions (FFMEs), was studied. A novel inline high-shear mixing (IHSM) method was used to produce emulsions, and three protein contents were investigated at a fixed RPO content of 12%: low (7.7%), medium (10.5%) and high (13%). Pressure drop measurement was used as an inline approach to determine viscosity using the Hagen-Poiseuille equation. In addition, offline viscometry, particle size and emulsion stability analyses were performed. Emulsion fat droplet size decreased significantly (P < 0.05) as a function of number of passes through the IHSM, due to an effective increase in residence time. Furthermore, inline pressure drop data demonstrated that the emulsification process displayed two distinct stages: (i) oil injection, and (ii) reduction in fat droplet size, irrespective of protein content. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

The use of inline high-shear rotor-stator mixing for preparation of high-solids milk protein-stabilised oil-in-water emulsions with different protein:fat ratios

Loading next page...
 
/lp/elsevier/the-use-of-inline-high-shear-rotor-stator-mixing-for-preparation-of-Ztu0VJdG8N
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2017.10.015
Publisher site
See Article on Publisher Site

Abstract

The emulsification of refined palm oil (RPO) in a continuous phase consisting of skim milk concentrate (SMC) and maltodextrin with a dextrose equivalent value of 17 (MD17) to produce fat-filled milk emulsions (FFMEs), was studied. A novel inline high-shear mixing (IHSM) method was used to produce emulsions, and three protein contents were investigated at a fixed RPO content of 12%: low (7.7%), medium (10.5%) and high (13%). Pressure drop measurement was used as an inline approach to determine viscosity using the Hagen-Poiseuille equation. In addition, offline viscometry, particle size and emulsion stability analyses were performed. Emulsion fat droplet size decreased significantly (P < 0.05) as a function of number of passes through the IHSM, due to an effective increase in residence time. Furthermore, inline pressure drop data demonstrated that the emulsification process displayed two distinct stages: (i) oil injection, and (ii) reduction in fat droplet size, irrespective of protein content.

Journal

Journal of Food EngineeringElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off