The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations

The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations Nonlinear wave equation is extensively applied in a wide variety of scientific fields, such as nonlinear optics, solid state physics and quantum field theory. In this paper, two high-performance compact alternating direction implicit (ADI) methods are developed for the nonlinear wave equations. The first scheme is developed a three-level nonlinear difference scheme for nonlinear wave equations, where in x-direction, series of linear tridiagonal systems are solved by Thomas algorithm, while in y-direction, nonlinear algebraic system are computed by Newton’s iterative method. In contrast, the second scheme is linear, and permits the multiple uses of the Thomas algorithm in both x- and y-directions, thus it saves much time cost. By using the discrete energy analysis method, it is shown that both the developed schemes can attain numerical accuracy of order O(τ4+hx4+hy4) in H1-norm. Meanwhile, by the fixed point theorem and symmetric positive-definite properties of coefficient matrix, it is proved that they are both uniquely solvable. Besides, the proposed schemes are extended to the numerical solutions of the coupled sine-Gordon wave equations and damped wave equations. Finally, numerical results confirm the convergence orders and exhibit efficiency of our algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Computation Elsevier

The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations

Loading next page...
 
/lp/elsevier/the-time-fourth-order-compact-adi-methods-for-solving-two-dimensional-TFcK7FNLV1
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0096-3003
eISSN
1873-5649
D.O.I.
10.1016/j.amc.2018.02.010
Publisher site
See Article on Publisher Site

Abstract

Nonlinear wave equation is extensively applied in a wide variety of scientific fields, such as nonlinear optics, solid state physics and quantum field theory. In this paper, two high-performance compact alternating direction implicit (ADI) methods are developed for the nonlinear wave equations. The first scheme is developed a three-level nonlinear difference scheme for nonlinear wave equations, where in x-direction, series of linear tridiagonal systems are solved by Thomas algorithm, while in y-direction, nonlinear algebraic system are computed by Newton’s iterative method. In contrast, the second scheme is linear, and permits the multiple uses of the Thomas algorithm in both x- and y-directions, thus it saves much time cost. By using the discrete energy analysis method, it is shown that both the developed schemes can attain numerical accuracy of order O(τ4+hx4+hy4) in H1-norm. Meanwhile, by the fixed point theorem and symmetric positive-definite properties of coefficient matrix, it is proved that they are both uniquely solvable. Besides, the proposed schemes are extended to the numerical solutions of the coupled sine-Gordon wave equations and damped wave equations. Finally, numerical results confirm the convergence orders and exhibit efficiency of our algorithms.

Journal

Applied Mathematics and ComputationElsevier

Published: Jul 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off