The Role of Packaging Sites in Efficient and Specific Virus Assembly

The Role of Packaging Sites in Efficient and Specific Virus Assembly During the life cycle of many single-stranded RNA viruses, including many human pathogens, a protein shell called the capsid spontaneously assembles around the viral genome. Understanding the mechanisms by which capsid proteins selectively assemble around the viral RNA amidst diverse host RNAs is a key question in virology. In one proposed mechanism, short sequences (packaging sites) within the genomic RNA promote rapid and efficient assembly through specific interactions with the capsid proteins. In this work, we develop a coarse-grained particle-based computational model for capsid proteins and RNA that represents protein–RNA interactions arising both from nonspecific electrostatics and from specific packaging site interactions. Using Brownian dynamics simulations, we explore how the efficiency and specificity of assembly depend on solution conditions (which control protein–protein and nonspecific protein–RNA interactions) and the strength and number of packaging sites. We identify distinct regions in parameter space in which packaging sites lead to highly specific assembly via different mechanisms and others in which packaging sites lead to kinetic traps. We relate these computational predictions to in vitro assays for specificity in which cognate viral RNAs compete against non-cognate RNAs for assembly by capsid proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Biology Elsevier

The Role of Packaging Sites in Efficient and Specific Virus Assembly

Loading next page...
 
/lp/elsevier/the-role-of-packaging-sites-in-efficient-and-specific-virus-assembly-hn9B8Rx7ho
Publisher
Academic Press
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0022-2836
D.O.I.
10.1016/j.jmb.2015.05.008
Publisher site
See Article on Publisher Site

Abstract

During the life cycle of many single-stranded RNA viruses, including many human pathogens, a protein shell called the capsid spontaneously assembles around the viral genome. Understanding the mechanisms by which capsid proteins selectively assemble around the viral RNA amidst diverse host RNAs is a key question in virology. In one proposed mechanism, short sequences (packaging sites) within the genomic RNA promote rapid and efficient assembly through specific interactions with the capsid proteins. In this work, we develop a coarse-grained particle-based computational model for capsid proteins and RNA that represents protein–RNA interactions arising both from nonspecific electrostatics and from specific packaging site interactions. Using Brownian dynamics simulations, we explore how the efficiency and specificity of assembly depend on solution conditions (which control protein–protein and nonspecific protein–RNA interactions) and the strength and number of packaging sites. We identify distinct regions in parameter space in which packaging sites lead to highly specific assembly via different mechanisms and others in which packaging sites lead to kinetic traps. We relate these computational predictions to in vitro assays for specificity in which cognate viral RNAs compete against non-cognate RNAs for assembly by capsid proteins.

Journal

Journal of Molecular BiologyElsevier

Published: Jul 31, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off