The dominant soil patterns in forested or previously forested landscapes in southern New Zealand and Tasmania are described. Soil properties on adjacent sunny and shady aspects in hill country of the South Island of New Zealand are compared to soil properties under adjacent ‘dry’ and ‘wet’ eucalypt forest in Tasmania. A soil contrast index or SCI is defined for comparing soil contrasts on parent materials of different absolute nutrient contents. Three soil groups are defined using the SCI. Group 1 soil pairs are stable New Zealand soils in which exchangeable Ca + Mg + K values are higher on drier sunny aspects than on moister shady aspects. Group 2 soil pairs are New Zealand soils in which soils on sunny aspects display evidence of topsoil erosion by wind; consequently some soil pairs on dry (sunny) aspects have lower levels of exchangeable Ca + Mg + K than soils on moister (shady) aspects. Group 3 soil pairs are Tasmanian. Soils on drier sites (under dry eucalypt forest) invariably have lower exchangeable Ca + Mg + K values than soils on moister sites (under wet eucalypt forest), which is the reverse of the pattern in SCI Group 1 soils in New Zealand. Except on clay-rich parent materials, Tasmanian soils under dry forest generally have texture-contrast profiles and a mean C/N ratio in topsoils (A1 horizons) of 29. Soils under wet forest generally have uniform or gradational texture profiles and a mean topsoil C/N ratio of 15. The texture-contrast soils show strong clay eluviation with sand or sandy loam textures in upper horizons and clayey textures in lower horizons. However, in New Zealand texture-contrast soils are all but absent, and do not occur in the previously forested areas described in this paper. Topsoils (Ah horizons and soils sampled to 7.5 cm depth) in New Zealand areas sampled in this study have a mean C/N ratio of 15, regardless of whether they occur on sunny or shady aspects. We propose that the frequency and spatial occurrence of fire are the dominant processes causing: (1) the marked difference in levels of nutrients and different topsoil C/N ratios in soils of Tasmania; (2) the development of texture-contrast soils under dry forests in Tasmania; and (3) the difference between soil patterns in New Zealand and Tasmania. Fire depletes nutrients in forests by causing losses to the atmosphere, losses by runoff, and losses by leaching. Nutrient loss by fire encourages fire-tolerant vegetation adapted to lower soil nutrient status, so frequent fire is a feedback mechanism that causes progressive soil nutrient depletion. By destroying organic matter and diminishing organic matter supply to the soil surface fire inhibits clay–organic matter linkages and soil faunal mixing and promotes clay eluviation. Fire frequency is likely to have increased markedly with the arrival of humans at ca. 34 000 years B.P. in Tasmania and ca. 800 years B.P. in New Zealand. We argue that texture-contrast soils have not formed in New Zealand because of the short history of frequent fires in that country. A corollary of this conclusion is that texture-contrast soils in Tasmania are, at least in part, anthropogenic in origin.
Forest Ecology and Management – Elsevier
Published: Dec 10, 2005
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
EndNote
Export to EndNoteAll DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue