The Role of FGF-3 in Early Inner Ear Development: An Analysis in Normal and kreisler Mutant Mice

The Role of FGF-3 in Early Inner Ear Development: An Analysis in Normal and kreisler Mutant Mice The development of the otic placode is believed to depend on an inductive signal from the adjacent hindbrain. A candidate for this signal is FGF-3 (Int-2), which is expressed in the hindbrain adjacent to the future ear in rhombomeres 5 and 6 (r5 and r6). However, in vitro tests (Represa et al. (1991), Nature 353, 561–563) conflict with findings from FGF-3 knockout mice (Mansour et al. (1993), Development 117, 13–28). The former suggest that FGF-3 from the hindbrain is required to induce formation of the otocyst, while the latter imply that FGF-3 is required only in the later process of otocyst differentiation. We find that in normal embryos at early stages the gene is expressed not only in r5 and r6, but also in most of the hindbrain anterior to this and in the head ectoderm in the prospective otic placode region. In kreisler mutant embryos, however, there is no heightened expression in r5 and r6, but the early patch of expression in the prospective otic placode ectoderm is still seen and the otic vesicle still forms at nearly the normal place. Subsequent malformations of the inner ear in kreisler and in FGF-3 knockout mice are similar, involving failure of the development of the endolymphatic appendage. These findings argue that FGF-3 is not required as an inductive signal for invagination of the otic placode to form a vesicle, whose future site is already marked out independently of any localized FGF-3 signal from r5 and r6. FGF-3 does, however, appear to be required for a correct pattern of differentiation within the vesicle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Developmental Biology Elsevier

The Role of FGF-3 in Early Inner Ear Development: An Analysis in Normal and kreisler Mutant Mice

Loading next page...
 
/lp/elsevier/the-role-of-fgf-3-in-early-inner-ear-development-an-analysis-in-normal-ri05tlH00r
Publisher
Elsevier
Copyright
Copyright © 1996 Academic Press
ISSN
0012-1606
eISSN
1095-564X
DOI
10.1006/dbio.1996.0081
Publisher site
See Article on Publisher Site

Abstract

The development of the otic placode is believed to depend on an inductive signal from the adjacent hindbrain. A candidate for this signal is FGF-3 (Int-2), which is expressed in the hindbrain adjacent to the future ear in rhombomeres 5 and 6 (r5 and r6). However, in vitro tests (Represa et al. (1991), Nature 353, 561–563) conflict with findings from FGF-3 knockout mice (Mansour et al. (1993), Development 117, 13–28). The former suggest that FGF-3 from the hindbrain is required to induce formation of the otocyst, while the latter imply that FGF-3 is required only in the later process of otocyst differentiation. We find that in normal embryos at early stages the gene is expressed not only in r5 and r6, but also in most of the hindbrain anterior to this and in the head ectoderm in the prospective otic placode region. In kreisler mutant embryos, however, there is no heightened expression in r5 and r6, but the early patch of expression in the prospective otic placode ectoderm is still seen and the otic vesicle still forms at nearly the normal place. Subsequent malformations of the inner ear in kreisler and in FGF-3 knockout mice are similar, involving failure of the development of the endolymphatic appendage. These findings argue that FGF-3 is not required as an inductive signal for invagination of the otic placode to form a vesicle, whose future site is already marked out independently of any localized FGF-3 signal from r5 and r6. FGF-3 does, however, appear to be required for a correct pattern of differentiation within the vesicle.

Journal

Developmental BiologyElsevier

Published: Mar 15, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off