The role of aquaporins in cellular and whole plant water balance

The role of aquaporins in cellular and whole plant water balance Aquaporins are water channel proteins belonging to the major intrinsic protein (MIP) superfamily of membrane proteins. More than 150 MIPs have been identified in organisms ranging from bacteria to animals and plants. In plants, aquaporins are present in the plasma membrane and in the vacuolar membrane where they are abundant constituents. Functional studies of aquaporins have hitherto mainly been performed by heterologous expression in Xenopus oocytes. A main issue is now to understand their role in the plant, where they are likely to be important both at the cellular and at the whole plant level. Plants contain a large number of aquaporin isoforms with distinct cell type- and tissue-specific expression patterns. Some of these are constitutively expressed, whereas the expression of others is regulated in response to environmental factors, such as drought and salinity. At the protein level, regulation of water transport activity by phosphorylation has been reported for some aquaporins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta Biomembranes Or Bba Biomembranes Elsevier

The role of aquaporins in cellular and whole plant water balance

Loading next page...
 
/lp/elsevier/the-role-of-aquaporins-in-cellular-and-whole-plant-water-balance-luY0MJ9yet
Publisher
Elsevier
Copyright
Copyright © 2000 Elsevier Science B.V.
ISSN
0005-2736
eISSN
1879-2642
D.O.I.
10.1016/S0005-2736(00)00147-4
Publisher site
See Article on Publisher Site

Abstract

Aquaporins are water channel proteins belonging to the major intrinsic protein (MIP) superfamily of membrane proteins. More than 150 MIPs have been identified in organisms ranging from bacteria to animals and plants. In plants, aquaporins are present in the plasma membrane and in the vacuolar membrane where they are abundant constituents. Functional studies of aquaporins have hitherto mainly been performed by heterologous expression in Xenopus oocytes. A main issue is now to understand their role in the plant, where they are likely to be important both at the cellular and at the whole plant level. Plants contain a large number of aquaporin isoforms with distinct cell type- and tissue-specific expression patterns. Some of these are constitutively expressed, whereas the expression of others is regulated in response to environmental factors, such as drought and salinity. At the protein level, regulation of water transport activity by phosphorylation has been reported for some aquaporins.

Journal

Biochimica et Biophysica Acta Biomembranes Or Bba BiomembranesElsevier

Published: May 1, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off