The proton conductivity in benzimidazolium azelate under moderate pressure

The proton conductivity in benzimidazolium azelate under moderate pressure The kinetic Monte Carlo method is applied to examine effects of hydrostatic pressure on the benzimidazolium azelate (BenAze) proton conductivity. Following the experimental indications the recently proposed model has been modified to simulate the transport phenomena under moderate pressure, resulting in a very good agreement between numerical and experimental results. We demonstrate that the pressure-induced changes in the proton conductivity can be attributed to solely two parameters: the length of the hydrogen bond and the amplitude of lattice vibrations while other processes play a minor role. Furthermore, in high-pressure regime we anticipate the crossover from the increasing to decreasing temperature dependence of the proton conductivity arising from the changes in the hydrogen-bond activation barrier with increased pressure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Solid State Ionics Elsevier

The proton conductivity in benzimidazolium azelate under moderate pressure

Loading next page...
 
/lp/elsevier/the-proton-conductivity-in-benzimidazolium-azelate-under-moderate-DHDK5gM2iV
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0167-2738
eISSN
1872-7689
D.O.I.
10.1016/j.ssi.2015.06.003
Publisher site
See Article on Publisher Site

Abstract

The kinetic Monte Carlo method is applied to examine effects of hydrostatic pressure on the benzimidazolium azelate (BenAze) proton conductivity. Following the experimental indications the recently proposed model has been modified to simulate the transport phenomena under moderate pressure, resulting in a very good agreement between numerical and experimental results. We demonstrate that the pressure-induced changes in the proton conductivity can be attributed to solely two parameters: the length of the hydrogen bond and the amplitude of lattice vibrations while other processes play a minor role. Furthermore, in high-pressure regime we anticipate the crossover from the increasing to decreasing temperature dependence of the proton conductivity arising from the changes in the hydrogen-bond activation barrier with increased pressure.

Journal

Solid State IonicsElsevier

Published: Oct 1, 2015

References

  • Ultrasonic Methods in Solid State Physics
    Truell, R.; Elbaum, C.; Chick, B.B.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off