The optic nerve head in glaucoma: role of astrocytes in tissue remodeling

The optic nerve head in glaucoma: role of astrocytes in tissue remodeling Primary open angle glaucoma is a common eye disease characterized by loss of the axons of the retinal ganglion cells leading to progressive loss of vision. The site of damage to the axons is at the level of the lamina cribrosa in the optic nerve head. The mechanism of axonal loss is unknown but elevated intraocular pressure and age are the most common factors associated with the disease. Previous studies in human glaucoma and in experimental glaucoma in monkeys have established a relationship between chronic elevation of intraocular pressure and remodeling of the optic nerve head tissues known clinically as cupping of the optic disc. This review focuses on the astrocytes, the major cell type in the optic nerve head. Astrocytes participate actively in the remodeling of neural tissues during development and in disease. In glaucomatous optic neuropathy, astrocytes play a major role in the remodeling of the extracellular matrix of the optic nerve head, synthesize growth factors and other cellular mediators that may affect directly, or indirectly, the axons of the retinal ganglion cells. Due to the architecture of the lamina cribrosa, formed by the cells and the fibroelastic extracellular matrix, astrocytes may respond to changes in intraocular pressure in glaucoma, leading to some of the detrimental events that underlie axonal loss and retinal ganglion cell degeneration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Progress in Retinal and Eye Research Elsevier

The optic nerve head in glaucoma: role of astrocytes in tissue remodeling

Loading next page...
 
/lp/elsevier/the-optic-nerve-head-in-glaucoma-role-of-astrocytes-in-tissue-v76MJov5HW
Publisher
Elsevier
Copyright
Copyright © 2000 Elsevier Science Ltd
ISSN
1350-9462
eISSN
1873-1635
D.O.I.
10.1016/S1350-9462(99)00017-8
Publisher site
See Article on Publisher Site

Abstract

Primary open angle glaucoma is a common eye disease characterized by loss of the axons of the retinal ganglion cells leading to progressive loss of vision. The site of damage to the axons is at the level of the lamina cribrosa in the optic nerve head. The mechanism of axonal loss is unknown but elevated intraocular pressure and age are the most common factors associated with the disease. Previous studies in human glaucoma and in experimental glaucoma in monkeys have established a relationship between chronic elevation of intraocular pressure and remodeling of the optic nerve head tissues known clinically as cupping of the optic disc. This review focuses on the astrocytes, the major cell type in the optic nerve head. Astrocytes participate actively in the remodeling of neural tissues during development and in disease. In glaucomatous optic neuropathy, astrocytes play a major role in the remodeling of the extracellular matrix of the optic nerve head, synthesize growth factors and other cellular mediators that may affect directly, or indirectly, the axons of the retinal ganglion cells. Due to the architecture of the lamina cribrosa, formed by the cells and the fibroelastic extracellular matrix, astrocytes may respond to changes in intraocular pressure in glaucoma, leading to some of the detrimental events that underlie axonal loss and retinal ganglion cell degeneration.

Journal

Progress in Retinal and Eye ResearchElsevier

Published: May 1, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off