The Novel 4-Phenyl-2-Phenoxyacetamide Thiazoles modulates the tumor hypoxia leading to the crackdown of neoangiogenesis and evoking the cell death

The Novel 4-Phenyl-2-Phenoxyacetamide Thiazoles modulates the tumor hypoxia leading to the... Tumor microenvironment is a complex multistep event which involves several hallmarks that transform the normal cell into cancerous cell. Designing the novel antagonistic molecule to reverse the tumor microenvironment with specific target is essential in modern biological studies. The novel 4-phenyl-2-phenoxyacetamide thiazole analogues 8a-ab were synthesized in multistep process, then screened and assessed for cytotoxic and anti-proliferative effects in vitro against multiple cancer cells of different origin such as MCF-7, A549, EAC and DLA cells which revealed that compound 8f with fluoro and methyl substitute has potential cytotoxic efficacy with an average IC50 value of ˜ 13 μM. The mechanism of cytotoxicity assessed for anti-tumor studies both in ascites and solid tumor models in-vivo inferred the regressed tumor activity. This is due to changes in the cause of tumor microenvironment with crackdown of neovascularization and evoking apoptosis process as assessed by CAM, corneal vascularization and apoptotic hallmarks in 8f treated cells. The molecular gene studies inferred involvement of HIF-1upregulation and stabilization of p53 which are interlinked in signaling as conferred by immunoblot analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

The Novel 4-Phenyl-2-Phenoxyacetamide Thiazoles modulates the tumor hypoxia leading to the crackdown of neoangiogenesis and evoking the cell death

Loading next page...
 
/lp/elsevier/the-novel-4-phenyl-2-phenoxyacetamide-thiazoles-modulates-the-tumor-rcGI5GCx2Z
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.10.082
Publisher site
See Article on Publisher Site

Abstract

Tumor microenvironment is a complex multistep event which involves several hallmarks that transform the normal cell into cancerous cell. Designing the novel antagonistic molecule to reverse the tumor microenvironment with specific target is essential in modern biological studies. The novel 4-phenyl-2-phenoxyacetamide thiazole analogues 8a-ab were synthesized in multistep process, then screened and assessed for cytotoxic and anti-proliferative effects in vitro against multiple cancer cells of different origin such as MCF-7, A549, EAC and DLA cells which revealed that compound 8f with fluoro and methyl substitute has potential cytotoxic efficacy with an average IC50 value of ˜ 13 μM. The mechanism of cytotoxicity assessed for anti-tumor studies both in ascites and solid tumor models in-vivo inferred the regressed tumor activity. This is due to changes in the cause of tumor microenvironment with crackdown of neovascularization and evoking apoptosis process as assessed by CAM, corneal vascularization and apoptotic hallmarks in 8f treated cells. The molecular gene studies inferred involvement of HIF-1upregulation and stabilization of p53 which are interlinked in signaling as conferred by immunoblot analysis.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off