The new open Flexible Emission Inventory for Greece and the Greater Athens Area (FEI-GREGAA): Account of pollutant sources and their importance from 2006 to 2012

The new open Flexible Emission Inventory for Greece and the Greater Athens Area (FEI-GREGAA):... Photochemical and particulate pollution problems persist in Athens as they do in various European cities, despite measures taken. Although, for many cities, organized and updated pollutant emissions databases exist, as well as infrastructure for the support of policy implementation, this is not the case for Greece and Athens. So far abstract efforts to create inventories from temporal and spatial annual low resolution data have not lead to the creation of a useful database. The objective of this study was to construct an emission inventory in order to examine the emission trends in Greece and the Greater Athens Area for the period 2006–2012 on a spatial scale of 6 × 6 km2 and 2 × 2 km2, respectively and on a temporal scale of 1 h. Emissions were calculated from stationary combustion sources, transportation (road, navigation and aviation), agriculture and industry obtained from official national and European sources. Moreover, new emission factors were calculated for road transport and aviation. The final database named F.E.I. – GREGAA (Flexible Emission Inventory for GREece and the GAA) is open-structured so as to receive data updates, new pollutants, various emission scenarios and/or different emission factors and be transformed for any grid spacing. Its main purpose is to be used in applications with photochemical models to contribute to the investigation on the type of sources and activities that lead to the configuration of air quality. Results showed a decreasing trend in CO, NOx and VOCs-NMVOCs emissions and an increasing trend from 2011 onwards in PM10 emissions. Road transport and small combustion contribute most to CO emissions, road transport and navigation to NOx and small combustion and industries to PM10. The onset of the economic crisis can be seen from the reduction of emissions from industry and the increase of biomass burning for heating purposes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Atmospheric Environment Elsevier

The new open Flexible Emission Inventory for Greece and the Greater Athens Area (FEI-GREGAA): Account of pollutant sources and their importance from 2006 to 2012

Loading next page...
 
/lp/elsevier/the-new-open-flexible-emission-inventory-for-greece-and-the-greater-H4RK97JwOK
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1352-2310
eISSN
1873-2844
D.O.I.
10.1016/j.atmosenv.2016.04.004
Publisher site
See Article on Publisher Site

Abstract

Photochemical and particulate pollution problems persist in Athens as they do in various European cities, despite measures taken. Although, for many cities, organized and updated pollutant emissions databases exist, as well as infrastructure for the support of policy implementation, this is not the case for Greece and Athens. So far abstract efforts to create inventories from temporal and spatial annual low resolution data have not lead to the creation of a useful database. The objective of this study was to construct an emission inventory in order to examine the emission trends in Greece and the Greater Athens Area for the period 2006–2012 on a spatial scale of 6 × 6 km2 and 2 × 2 km2, respectively and on a temporal scale of 1 h. Emissions were calculated from stationary combustion sources, transportation (road, navigation and aviation), agriculture and industry obtained from official national and European sources. Moreover, new emission factors were calculated for road transport and aviation. The final database named F.E.I. – GREGAA (Flexible Emission Inventory for GREece and the GAA) is open-structured so as to receive data updates, new pollutants, various emission scenarios and/or different emission factors and be transformed for any grid spacing. Its main purpose is to be used in applications with photochemical models to contribute to the investigation on the type of sources and activities that lead to the configuration of air quality. Results showed a decreasing trend in CO, NOx and VOCs-NMVOCs emissions and an increasing trend from 2011 onwards in PM10 emissions. Road transport and small combustion contribute most to CO emissions, road transport and navigation to NOx and small combustion and industries to PM10. The onset of the economic crisis can be seen from the reduction of emissions from industry and the increase of biomass burning for heating purposes.

Journal

Atmospheric EnvironmentElsevier

Published: Jul 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off