The martian atmosphere in the region of Hellas basin as observed by the planetary Fourier spectrometer (PFS-MEX)

The martian atmosphere in the region of Hellas basin as observed by the planetary Fourier... This work presents a review of the observations acquired by the planetary Fourier spectrometer (PFS) in the region of the Hellas basin. Taking advantage of the high spectral resolution of PFS, the vertical air temperature profile can be investigated with a previously unexperienced vertical resolution. Extensive comparisons with the expectations of EMCD 4.0 database highlight moderate discrepancies, strongly dependant on season. Namely, the morning observations acquired around L s =45° show a series of temperature deficiencies with recurrent spatial patterns in different observations, correlated with the topography profile. Trends of integrated dust loads as a function of the field of view (FOV) elevation are also described. Values are consistent with the retrieval hypothesis of a dust scale height equal to the gas one, even far from the season of main dust storms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Planetary and Space Science Elsevier

The martian atmosphere in the region of Hellas basin as observed by the planetary Fourier spectrometer (PFS-MEX)

Loading next page...
 
/lp/elsevier/the-martian-atmosphere-in-the-region-of-hellas-basin-as-observed-by-qA5JyaVXY6
Publisher
Elsevier
Copyright
Copyright © 2007 Elsevier Ltd
ISSN
0032-0633
eISSN
1873-5088
D.O.I.
10.1016/j.pss.2006.12.006
Publisher site
See Article on Publisher Site

Abstract

This work presents a review of the observations acquired by the planetary Fourier spectrometer (PFS) in the region of the Hellas basin. Taking advantage of the high spectral resolution of PFS, the vertical air temperature profile can be investigated with a previously unexperienced vertical resolution. Extensive comparisons with the expectations of EMCD 4.0 database highlight moderate discrepancies, strongly dependant on season. Namely, the morning observations acquired around L s =45° show a series of temperature deficiencies with recurrent spatial patterns in different observations, correlated with the topography profile. Trends of integrated dust loads as a function of the field of view (FOV) elevation are also described. Values are consistent with the retrieval hypothesis of a dust scale height equal to the gas one, even far from the season of main dust storms.

Journal

Planetary and Space ScienceElsevier

Published: Jul 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off