The Impact of Systems Biology on Bioprocessing

The Impact of Systems Biology on Bioprocessing Bioprocessing offers a sustainable and green approach to the production of chemicals. However, a bottleneck in introducing bioprocesses is cell factory development, which is costly and time-consuming. A systems biology approach can expedite cell factory design by using genome-wide analyses alongside mathematical modeling to characterize and predict cellular physiology. This approach can drive cycles of design, build, test, and learn implemented by metabolic engineers to optimize the cell factory performance. Streamlining of the design phase requires a clearer understanding of metabolism and its regulation, which can be achieved using quantitative and integrated omic characterization, alongside more advanced analytical methods. We discuss here the current impact of systems biology and challenges of closing the gap between bioprocessing and more traditional methods of chemical production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Trends in Biotechnology Elsevier

The Impact of Systems Biology on Bioprocessing

Loading next page...
 
/lp/elsevier/the-impact-of-systems-biology-on-bioprocessing-IIVHMz6sbG
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0167-7799
D.O.I.
10.1016/j.tibtech.2017.08.011
Publisher site
See Article on Publisher Site

Abstract

Bioprocessing offers a sustainable and green approach to the production of chemicals. However, a bottleneck in introducing bioprocesses is cell factory development, which is costly and time-consuming. A systems biology approach can expedite cell factory design by using genome-wide analyses alongside mathematical modeling to characterize and predict cellular physiology. This approach can drive cycles of design, build, test, and learn implemented by metabolic engineers to optimize the cell factory performance. Streamlining of the design phase requires a clearer understanding of metabolism and its regulation, which can be achieved using quantitative and integrated omic characterization, alongside more advanced analytical methods. We discuss here the current impact of systems biology and challenges of closing the gap between bioprocessing and more traditional methods of chemical production.

Journal

Trends in BiotechnologyElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off