The IL-6/STAT3 pathway regulates adhesion molecules and cytoskeleton of endothelial cells in thromboangiitis obliterans

The IL-6/STAT3 pathway regulates adhesion molecules and cytoskeleton of endothelial cells in... Thromboangiitis obliterans (TAO) (also known as Buerger's disease) is an inflammatory vascular disease that predominantly affects small- and medium-sized blood vessels of extremities. Endothelial cells play critical roles in the initiation and progression of this disease, but the underlying mechanisms remain unclear. In the present study, we demonstrate that patients with TAO had significantly higher levels of interleukin-6 (IL-6), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in their plasmas, and the involved arterial tissues expressed higher levels of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), ICAM-1 and VCAM-1. In exploring the molecular mechanisms with human aortic endothelial cells (HAECs), we found that recombinant IL-6 activated the STAT3 pathway, leading to the upregulation and overproduction of ICAM-1 and VCAM-1. RhoA (Ras homolog family member A), eNOS (endothelial nitric oxide synthase) and MMP-9 (matrix metalloproteinase-9) participated in this cellular signaling, and their interaction regulated the expression of ICAM-1 and VCAM-1. The activated STAT3 pathway by IL-6 also modulated the cytoskeleton of HAECs by regulating phosphorylation of focal adhesion kinase (FAK) and acetylation of α-tubulin through interplaying with RhoA. In summary, the present results indicate that activation of the IL-6/STAT3 pathway contributes to the pathogenesis of TAO by regulating cellular adhesion molecules and cytoskeleton of vascular endothelial cells, suggesting that targeting this pathway may provide a potential approach for the management of TAO. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular Signalling Elsevier

The IL-6/STAT3 pathway regulates adhesion molecules and cytoskeleton of endothelial cells in thromboangiitis obliterans

Loading next page...
 
/lp/elsevier/the-il-6-stat3-pathway-regulates-adhesion-molecules-and-cytoskeleton-mQLJs9DV9N
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0898-6568
eISSN
1873-3913
D.O.I.
10.1016/j.cellsig.2018.01.015
Publisher site
See Article on Publisher Site

Abstract

Thromboangiitis obliterans (TAO) (also known as Buerger's disease) is an inflammatory vascular disease that predominantly affects small- and medium-sized blood vessels of extremities. Endothelial cells play critical roles in the initiation and progression of this disease, but the underlying mechanisms remain unclear. In the present study, we demonstrate that patients with TAO had significantly higher levels of interleukin-6 (IL-6), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in their plasmas, and the involved arterial tissues expressed higher levels of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), ICAM-1 and VCAM-1. In exploring the molecular mechanisms with human aortic endothelial cells (HAECs), we found that recombinant IL-6 activated the STAT3 pathway, leading to the upregulation and overproduction of ICAM-1 and VCAM-1. RhoA (Ras homolog family member A), eNOS (endothelial nitric oxide synthase) and MMP-9 (matrix metalloproteinase-9) participated in this cellular signaling, and their interaction regulated the expression of ICAM-1 and VCAM-1. The activated STAT3 pathway by IL-6 also modulated the cytoskeleton of HAECs by regulating phosphorylation of focal adhesion kinase (FAK) and acetylation of α-tubulin through interplaying with RhoA. In summary, the present results indicate that activation of the IL-6/STAT3 pathway contributes to the pathogenesis of TAO by regulating cellular adhesion molecules and cytoskeleton of vascular endothelial cells, suggesting that targeting this pathway may provide a potential approach for the management of TAO.

Journal

Cellular SignallingElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off