The evaluation strip: A new and robust method for plotting predicted responses from species distribution models

The evaluation strip: A new and robust method for plotting predicted responses from species... Increasing use is being made in conservation management of statistical models that couple extensive collections of species and environmental data to make predictions of the geographic distributions of species. While the relationships fitted between a species and its environment are relatively transparent for many of these modeling techniques, others are more ‘black box’ in character, only producing geographic predictions and providing minimal or untraditional summaries of the fitted relationships on which these predictions are based. This in turn prevents robust evaluation of the ecological sensibility of such models, a necessary process if model predictions are to be treated with confidence. Here we propose a new but simple method for visualizing modeled responses that can be implemented with any modeling method, and demonstrate its application using five common methods applied to the prediction of an Australian tree species. This is achieved by insetting an “evaluation strip” into the spatial data layers, which, after predictions have been made, can be clipped out and used for creating plots of the modelled responses. We present findings of the application strip for algorithms GLMs, GAMs, CLIM, DOMAIN and MARS. Evaluation strips can be constructed to investigate either uni-variate responses, or the simultaneous variation in predicted values in relation to two variables. The latter option is particularly useful for evaluating responses in models that allow the fitting of complex interaction terms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

The evaluation strip: A new and robust method for plotting predicted responses from species distribution models

Loading next page...
 
/lp/elsevier/the-evaluation-strip-a-new-and-robust-method-for-plotting-predicted-GECdgR28s0
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier B.V.
ISSN
0304-3800
eISSN
1872-7026
DOI
10.1016/j.ecolmodel.2004.12.007
Publisher site
See Article on Publisher Site

Abstract

Increasing use is being made in conservation management of statistical models that couple extensive collections of species and environmental data to make predictions of the geographic distributions of species. While the relationships fitted between a species and its environment are relatively transparent for many of these modeling techniques, others are more ‘black box’ in character, only producing geographic predictions and providing minimal or untraditional summaries of the fitted relationships on which these predictions are based. This in turn prevents robust evaluation of the ecological sensibility of such models, a necessary process if model predictions are to be treated with confidence. Here we propose a new but simple method for visualizing modeled responses that can be implemented with any modeling method, and demonstrate its application using five common methods applied to the prediction of an Australian tree species. This is achieved by insetting an “evaluation strip” into the spatial data layers, which, after predictions have been made, can be clipped out and used for creating plots of the modelled responses. We present findings of the application strip for algorithms GLMs, GAMs, CLIM, DOMAIN and MARS. Evaluation strips can be constructed to investigate either uni-variate responses, or the simultaneous variation in predicted values in relation to two variables. The latter option is particularly useful for evaluating responses in models that allow the fitting of complex interaction terms.

Journal

Ecological ModellingElsevier

Published: Aug 25, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off