The epidemic model based on the approximation for third-order motifs on networks

The epidemic model based on the approximation for third-order motifs on networks The spread of an infectious disease may depend on the structure of the network. To study the influence of the structure parameters of the network on the spread of the epidemic, we need to put these parameters into the epidemic model. The method of moment closure introduces structure parameters into the epidemic model. In this paper, we present a new moment closure epidemic model based on the approximation of third-order motifs in networks. The order of a motif defined in this paper is determined by the number of the edges in the motif, rather than by the number of nodes in the motif as defined in the literature. We provide a general approach to deriving a set of ordinary differential equations that describes, to a high degree of accuracy, the spread of an infectious disease. Using this method, we establish a susceptible-infected-recovered (SIR) model. We then calculate the basic reproduction number of the SIR model, and find that it decreases as the clustering coefficient increases. Finally, we perform some simulations using the proposed model to study the influence of the clustering coefficient on the final epidemic size, the maximum number of infected, and the peak time of the disease. The numerical simulations based on the SIR model in this paper fit the stochastic simulations based on the Monte Carlo method well at different levels of clustering. Our results show that the clustering coefficient poses impediments to the spread of disease under an SIR model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Biosciences Elsevier

The epidemic model based on the approximation for third-order motifs on networks

Loading next page...
 
/lp/elsevier/the-epidemic-model-based-on-the-approximation-for-third-order-motifs-BZChjej2nV
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0025-5564
D.O.I.
10.1016/j.mbs.2018.01.002
Publisher site
See Article on Publisher Site

Abstract

The spread of an infectious disease may depend on the structure of the network. To study the influence of the structure parameters of the network on the spread of the epidemic, we need to put these parameters into the epidemic model. The method of moment closure introduces structure parameters into the epidemic model. In this paper, we present a new moment closure epidemic model based on the approximation of third-order motifs in networks. The order of a motif defined in this paper is determined by the number of the edges in the motif, rather than by the number of nodes in the motif as defined in the literature. We provide a general approach to deriving a set of ordinary differential equations that describes, to a high degree of accuracy, the spread of an infectious disease. Using this method, we establish a susceptible-infected-recovered (SIR) model. We then calculate the basic reproduction number of the SIR model, and find that it decreases as the clustering coefficient increases. Finally, we perform some simulations using the proposed model to study the influence of the clustering coefficient on the final epidemic size, the maximum number of infected, and the peak time of the disease. The numerical simulations based on the SIR model in this paper fit the stochastic simulations based on the Monte Carlo method well at different levels of clustering. Our results show that the clustering coefficient poses impediments to the spread of disease under an SIR model.

Journal

Mathematical BiosciencesElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off