The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production

The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production Lactic acid bacteria are well known to be beneficial for food production and, as probiotics, they are relevant for many aspects of health. However, their potential as cell factories for the chemical industry is only emerging. Many physiological traits of these microorganisms, evolved for optimal growth in their niche, are also valuable in an industrial context. Here, we illuminate these features and describe why the distinctive adaptation of lactic acid bacteria is particularly useful when developing a microbial process for chemical production from renewable resources. High carbon uptake rates with low biomass formation combined with strictly regulated simple metabolic pathways, leading to a limited number of metabolites, are among the key factors defining their success in both nature and industry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Trends in Biotechnology Elsevier

The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production

Loading next page...
 
/lp/elsevier/the-efficient-clade-lactic-acid-bacteria-for-industrial-chemical-DT2fNjRp3J
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0167-7799
D.O.I.
10.1016/j.tibtech.2017.05.002
Publisher site
See Article on Publisher Site

Abstract

Lactic acid bacteria are well known to be beneficial for food production and, as probiotics, they are relevant for many aspects of health. However, their potential as cell factories for the chemical industry is only emerging. Many physiological traits of these microorganisms, evolved for optimal growth in their niche, are also valuable in an industrial context. Here, we illuminate these features and describe why the distinctive adaptation of lactic acid bacteria is particularly useful when developing a microbial process for chemical production from renewable resources. High carbon uptake rates with low biomass formation combined with strictly regulated simple metabolic pathways, leading to a limited number of metabolites, are among the key factors defining their success in both nature and industry.

Journal

Trends in BiotechnologyElsevier

Published: Aug 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off