The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments

The effects of superabsorbent polymers on the microstructure of cementitious materials studied by... Superabsorbent polymers (SAPs) are a promising additive to be used in the building industry but may induce microstructural changes. Water vapour sorption may be used to characterize the change in pore structure of cementitious materials, but the technique is difficult to interpret. In the present paper, static and dynamic vapour sorption (DVS) measurements were performed and compared to nitrogen adsorption experiments. The models of Dubinin-Radushkevich and Barrett-Joyner-Halenda were hereby applied to study pores in the micro- and mesopore range. The results show that cement pastes with SAPs and without additional water show a slight decrease in porosity in the micro- and mesopore range. Cement pastes with SAPs and with additional water show no significant change of porosity in the micropore range and a slight increase in the larger mesopore range. These new findings give insight into the effects of SAPs on the microstructure and strength of cementitious materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cement and Concrete Research Elsevier

The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments

Loading next page...
 
/lp/elsevier/the-effects-of-superabsorbent-polymers-on-the-microstructure-of-Qmb0kJopHs
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0008-8846
D.O.I.
10.1016/j.cemconres.2015.06.013
Publisher site
See Article on Publisher Site

Abstract

Superabsorbent polymers (SAPs) are a promising additive to be used in the building industry but may induce microstructural changes. Water vapour sorption may be used to characterize the change in pore structure of cementitious materials, but the technique is difficult to interpret. In the present paper, static and dynamic vapour sorption (DVS) measurements were performed and compared to nitrogen adsorption experiments. The models of Dubinin-Radushkevich and Barrett-Joyner-Halenda were hereby applied to study pores in the micro- and mesopore range. The results show that cement pastes with SAPs and without additional water show a slight decrease in porosity in the micro- and mesopore range. Cement pastes with SAPs and with additional water show no significant change of porosity in the micropore range and a slight increase in the larger mesopore range. These new findings give insight into the effects of SAPs on the microstructure and strength of cementitious materials.

Journal

Cement and Concrete ResearchElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off