The effects of geological surroundings on earthquake-induced snow avalanche prone areas in the Kopaonik region

The effects of geological surroundings on earthquake-induced snow avalanche prone areas in the... In most seismic hazard analyses, ground motion prediction equations consider only the effects of the top ~30 m of local soil and fail to consider the effects of the deep geological surroundings of sites. However, a series of recent seismic microzonation studies in the Kopaonik region showed that geological formations of several hundreds of meters to a few kilometers in depth strongly affect the severity of both short and longer period waves. This paper presents the results of a study conducted at a ski resort located in Kopaonik National Park, the most seismically active region in the Republic of Serbia. For the past 50 years, small to medium avalanches have occurred at the ski resort. Most recently, a non-earthquake–induced avalanche was observed in 2012. In the present study, a series of alternative maps of earthquake-induced snow avalanche prone areas were produced using terrain slope and snow thickness data, the probabilistic estimates of peak ground acceleration (PGA) values, and three different scenarios with differing snow density and shear strength values. The results showed that, when all other parameters remained the same, standard seismic hazard assessments that considered only the shallow geology conditions of local soil sites (and not the deep geology conditions of the sites) significantly underestimated the risk of earthquake-induced avalanches. This occurs as the PGA estimates of the deep geology rock sites (such as those commonly found in the highest parts of mountain regions) are ~30–70% larger than the PGA values predicted by empirical equations that only take into account the effects of the local soil conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cold Regions Science and Technology Elsevier

The effects of geological surroundings on earthquake-induced snow avalanche prone areas in the Kopaonik region

Loading next page...
 
/lp/elsevier/the-effects-of-geological-surroundings-on-earthquake-induced-snow-M0YwbIdHsH
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0165-232X
D.O.I.
10.1016/j.coldregions.2018.02.005
Publisher site
See Article on Publisher Site

Abstract

In most seismic hazard analyses, ground motion prediction equations consider only the effects of the top ~30 m of local soil and fail to consider the effects of the deep geological surroundings of sites. However, a series of recent seismic microzonation studies in the Kopaonik region showed that geological formations of several hundreds of meters to a few kilometers in depth strongly affect the severity of both short and longer period waves. This paper presents the results of a study conducted at a ski resort located in Kopaonik National Park, the most seismically active region in the Republic of Serbia. For the past 50 years, small to medium avalanches have occurred at the ski resort. Most recently, a non-earthquake–induced avalanche was observed in 2012. In the present study, a series of alternative maps of earthquake-induced snow avalanche prone areas were produced using terrain slope and snow thickness data, the probabilistic estimates of peak ground acceleration (PGA) values, and three different scenarios with differing snow density and shear strength values. The results showed that, when all other parameters remained the same, standard seismic hazard assessments that considered only the shallow geology conditions of local soil sites (and not the deep geology conditions of the sites) significantly underestimated the risk of earthquake-induced avalanches. This occurs as the PGA estimates of the deep geology rock sites (such as those commonly found in the highest parts of mountain regions) are ~30–70% larger than the PGA values predicted by empirical equations that only take into account the effects of the local soil conditions.

Journal

Cold Regions Science and TechnologyElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial