The effects of dopaminergic D2-like receptor stimulation upon behavioral and neural correlates of renewal depend on individual context processing propensities

The effects of dopaminergic D2-like receptor stimulation upon behavioral and neural correlates of... Renewal is defined as the recovery of an extinguished response when the contexts of extinction and recall differ. Prominent hippocampal activity during context-related extinction can predict renewal. Dopaminergic antagonism during extinction learning impaired extinction and reduced hippocampal activation, without affecting renewal. However, to what extent dopaminergic stimulation during extinction influences hippocampal processing and renewal is as yet unknown. In this fMRI study, we investigated the effects of the dopamine D2-like agonist bromocriptine upon renewal in an associative learning task, in hippocampus and ventromedial PFC. We observed significant differences between bromocriptine (BROMO) and placebo (PLAC) treatments in the subgroups showing (REN) and lacking (NoREN) renewal: the renewal level of BROMO REN was significantly higher, and associated with more prominent hippocampal activation during extinction and recall, compared to PLAC REN and BROMO NoREN. Results suggest that an interaction between D2like-agonist-induced enhancement of hippocampal activity and a pre-existing tendency favoring context processing contributed to the higher renewal levels. In contrast, ventromedial prefrontal activation was unchanged, indicating that increased hippocampal context processing and not prefrontal response selection constituted the central driving force behind the high renewal levels. The findings demonstrate that hippocampal dopamine is important for encoding and providing of context information, and thus crucially involved in the renewal effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

The effects of dopaminergic D2-like receptor stimulation upon behavioral and neural correlates of renewal depend on individual context processing propensities

Loading next page...
 
/lp/elsevier/the-effects-of-dopaminergic-d2-like-receptor-stimulation-upon-tuQHAdIpPx
Publisher
Elsevier
Copyright
Copyright © 2017 The Authors
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.022
Publisher site
See Article on Publisher Site

Abstract

Renewal is defined as the recovery of an extinguished response when the contexts of extinction and recall differ. Prominent hippocampal activity during context-related extinction can predict renewal. Dopaminergic antagonism during extinction learning impaired extinction and reduced hippocampal activation, without affecting renewal. However, to what extent dopaminergic stimulation during extinction influences hippocampal processing and renewal is as yet unknown. In this fMRI study, we investigated the effects of the dopamine D2-like agonist bromocriptine upon renewal in an associative learning task, in hippocampus and ventromedial PFC. We observed significant differences between bromocriptine (BROMO) and placebo (PLAC) treatments in the subgroups showing (REN) and lacking (NoREN) renewal: the renewal level of BROMO REN was significantly higher, and associated with more prominent hippocampal activation during extinction and recall, compared to PLAC REN and BROMO NoREN. Results suggest that an interaction between D2like-agonist-induced enhancement of hippocampal activity and a pre-existing tendency favoring context processing contributed to the higher renewal levels. In contrast, ventromedial prefrontal activation was unchanged, indicating that increased hippocampal context processing and not prefrontal response selection constituted the central driving force behind the high renewal levels. The findings demonstrate that hippocampal dopamine is important for encoding and providing of context information, and thus crucially involved in the renewal effect.

Journal

NeuroimageElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial