The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water

The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water In this paper a study is made of the biodegradability of a non-ionic surfactant, a nonylphenol polyethoxylate, in river water by means of monitoring the residual surfactant matter and the metabolites that may be generated. The influence of temperature on the extent of primary and ultimate biodegradation, and the kinetics of degradation are also determined. The method used was the river die-away test, and the biodegradation process was monitored by normal and reversed phase high-performance liquid chromatography (HPLC). These results are supported by other indirect measurements and indicators of the existence of microbial degradation process, as well as the parameters for the control of the process. The results obtained indicate that temperature has a strong influence on the period of acclimation of the microorganisms and on the rate of biodegradation. The percentages of primary biodegradation vary from 68% at 7°C to 96% at 25°C, and at all the temperatures studied, metabolites are generated during the biodegradation process which do not totally disappear at the end of the assay. The percentages of mineralization reached in the various assays, ranging from 30% at 7°C to 70% at 25°C, also show the great influence of temperature. Finally, a kinetic study of the biodegradation process has been carried out, with excellent fit of the experimental data to the kinetic model of Quiroga and Sales. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

The effect of temperature on the biodegradation of a nonylphenol polyethoxylate in river water

Loading next page...
 
/lp/elsevier/the-effect-of-temperature-on-the-biodegradation-of-a-nonylphenol-t0i9ruXWgD
Publisher
Elsevier
Copyright
Copyright © 1999 Elsevier Science Ltd
ISSN
0043-1354
DOI
10.1016/S0043-1354(98)00480-1
Publisher site
See Article on Publisher Site

Abstract

In this paper a study is made of the biodegradability of a non-ionic surfactant, a nonylphenol polyethoxylate, in river water by means of monitoring the residual surfactant matter and the metabolites that may be generated. The influence of temperature on the extent of primary and ultimate biodegradation, and the kinetics of degradation are also determined. The method used was the river die-away test, and the biodegradation process was monitored by normal and reversed phase high-performance liquid chromatography (HPLC). These results are supported by other indirect measurements and indicators of the existence of microbial degradation process, as well as the parameters for the control of the process. The results obtained indicate that temperature has a strong influence on the period of acclimation of the microorganisms and on the rate of biodegradation. The percentages of primary biodegradation vary from 68% at 7°C to 96% at 25°C, and at all the temperatures studied, metabolites are generated during the biodegradation process which do not totally disappear at the end of the assay. The percentages of mineralization reached in the various assays, ranging from 30% at 7°C to 70% at 25°C, also show the great influence of temperature. Finally, a kinetic study of the biodegradation process has been carried out, with excellent fit of the experimental data to the kinetic model of Quiroga and Sales.

Journal

Water ResearchElsevier

Published: Aug 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off