The effect of species response form on species distribution model prediction and inference

The effect of species response form on species distribution model prediction and inference Ecological theory and current evidence support the validity of various species response curves according to a variety of environmental gradients. Various methods have been developed for building species distribution models but it is not well known how these methods perform under various assumptions about the form of the underlying species response. It is also not well known how spatial correlation in species occurrence affects model performance. These effects were investigated by applying an environmental envelope method (BIOCLIM) and three regression-based methods: logistic regression (LR), generalized additive modelling (GAM), and classification and regression tree (CART) to simulated species occurrence data. Each simulated species was constructed as a sum of responses with varying weights. Three basic species response curves were assumed: Gaussian (bell-shaped), Beta (skew) and linear. The two non-linear responses conform to standard ecological niche theory. All three responses were applied in turn to three simulated environmental variables, each with varying degrees of spatial autocorrelation. GAM produced the most consistent model performance over all forms of simulated species response. BIOCLIM and CART were inclined to underrate the performance of variables with a linear response. BIOCLIM was less sensitive to data density. LR was susceptible to model misspecification. The use of a linear function in LR underestimated the performance of variables with non-linear species response and contributed to increased spatial autocorrelation in model residuals. Omission of important environmental variables with non-linear species response also contributed to increased spatial autocorrelation in model residuals. Adding a spatial autocovariate term to the LR model (autologistic model) reduced the spatial autocorrelation and improved model performance, but did not correct the misidentification of the dominant environmental determinant. This is to be expected since the autologistic approach was designed primarily for prediction and not for inference. Given that various forms of species response to environmental determinants arise commonly in nature: (1) higher order functions should always be tested when applying LR in modelling species distribution; (2) spatial autocorrelation in species distribution model residuals can indicate that environmental determinants with non-linear response are missing from the model; and (3) deficiencies in LR model performance due to model misspecification can be addressed by adding a spatial autocovariate to the model, but care should be taken when interpreting the coefficients of the model parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

The effect of species response form on species distribution model prediction and inference

Ecological Modelling, Volume 220 (19) – Oct 10, 2009

Loading next page...
 
/lp/elsevier/the-effect-of-species-response-form-on-species-distribution-model-3C4xVm9Ia8
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier B.V.
ISSN
0304-3800
eISSN
1872-7026
DOI
10.1016/j.ecolmodel.2009.06.004
Publisher site
See Article on Publisher Site

Abstract

Ecological theory and current evidence support the validity of various species response curves according to a variety of environmental gradients. Various methods have been developed for building species distribution models but it is not well known how these methods perform under various assumptions about the form of the underlying species response. It is also not well known how spatial correlation in species occurrence affects model performance. These effects were investigated by applying an environmental envelope method (BIOCLIM) and three regression-based methods: logistic regression (LR), generalized additive modelling (GAM), and classification and regression tree (CART) to simulated species occurrence data. Each simulated species was constructed as a sum of responses with varying weights. Three basic species response curves were assumed: Gaussian (bell-shaped), Beta (skew) and linear. The two non-linear responses conform to standard ecological niche theory. All three responses were applied in turn to three simulated environmental variables, each with varying degrees of spatial autocorrelation. GAM produced the most consistent model performance over all forms of simulated species response. BIOCLIM and CART were inclined to underrate the performance of variables with a linear response. BIOCLIM was less sensitive to data density. LR was susceptible to model misspecification. The use of a linear function in LR underestimated the performance of variables with non-linear species response and contributed to increased spatial autocorrelation in model residuals. Omission of important environmental variables with non-linear species response also contributed to increased spatial autocorrelation in model residuals. Adding a spatial autocovariate term to the LR model (autologistic model) reduced the spatial autocorrelation and improved model performance, but did not correct the misidentification of the dominant environmental determinant. This is to be expected since the autologistic approach was designed primarily for prediction and not for inference. Given that various forms of species response to environmental determinants arise commonly in nature: (1) higher order functions should always be tested when applying LR in modelling species distribution; (2) spatial autocorrelation in species distribution model residuals can indicate that environmental determinants with non-linear response are missing from the model; and (3) deficiencies in LR model performance due to model misspecification can be addressed by adding a spatial autocovariate to the model, but care should be taken when interpreting the coefficients of the model parameters.

Journal

Ecological ModellingElsevier

Published: Oct 10, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off