The effect of mechanical properties of masonry on the behavior of FRP-strengthened masonry-infilled RC frame under cyclic load

The effect of mechanical properties of masonry on the behavior of FRP-strengthened... Masonry walls in buildings can change dramatically the behavior of the infill RC frames under lateral loads. Therefore, many attempts were achieved to prevent the brittle collapse which may occur in the masonry infill wall. Under this aim, Fiber Reinforced Polymer (FRP) as a new technique was used. However, previous researches have focused on the FRP itself without considering the mechanical properties of the masonry wall on the efficiency of this rehabilitation way. Consequently, this effect is the main goal of this research.Finite Element Method (FEM) is performed in this work using Materially Non-linear Analysis (MNA). For more accuracy, the nonlinear bond between the steel reinforcement and concrete is considered together with the slipping between the infill and the bounding frame members. This research explores that the mechanical properties of concrete masonry walls can affect significantly the efficiency use of FRP where low-strength masonry or high-strength one can cause the FRP-repair to be worthless. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

The effect of mechanical properties of masonry on the behavior of FRP-strengthened masonry-infilled RC frame under cyclic load

Loading next page...
 
/lp/elsevier/the-effect-of-mechanical-properties-of-masonry-on-the-behavior-of-frp-MdUHwMVvVT
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2015.08.105
Publisher site
See Article on Publisher Site

Abstract

Masonry walls in buildings can change dramatically the behavior of the infill RC frames under lateral loads. Therefore, many attempts were achieved to prevent the brittle collapse which may occur in the masonry infill wall. Under this aim, Fiber Reinforced Polymer (FRP) as a new technique was used. However, previous researches have focused on the FRP itself without considering the mechanical properties of the masonry wall on the efficiency of this rehabilitation way. Consequently, this effect is the main goal of this research.Finite Element Method (FEM) is performed in this work using Materially Non-linear Analysis (MNA). For more accuracy, the nonlinear bond between the steel reinforcement and concrete is considered together with the slipping between the infill and the bounding frame members. This research explores that the mechanical properties of concrete masonry walls can affect significantly the efficiency use of FRP where low-strength masonry or high-strength one can cause the FRP-repair to be worthless.

Journal

Composite StructuresElsevier

Published: Dec 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off