The effect of growth factor environment on fibroblast morphological response to substrate stiffness

The effect of growth factor environment on fibroblast morphological response to substrate stiffness According to conventional understanding regarding dependence of cell behavior on substrate stiffness, tissue cells typically remain round on soft substrates but spread on stiff substrates. The current studies were carried out to learn if the growth factor environment influenced the foregoing relationship. Using standard methods, we prepared planar (2D) polyacrylamide (PA) gels ranging from 0.5 to 40 kPa and covalently cross-linked with fibronectin and collagen at concentrations ranging from 2.5 to 50 μg/ml. We carried out experiments with fibroblasts varying in their ability to form actin stress fibers and focal adhesions. In fetal bovine serum (FBS) containing medium – the growth factor environment in which most studies on cell spreading and substrate stiffness have been carried out – cell spreading increased with increasing substrate stiffness and adhesion ligand density. However, in platelet-derived growth factor (PDGF) containing medium, cell spreading was relatively independent of substrate stiffness and adhesion ligand density except little cell attachment occurred in the complete absence of cross-linked adhesion ligands. If cell contraction was blocked with blebbistatin, then cell spreading in FBS-containing medium became independent of substrate stiffness. The findings suggest that under growth factor conditions that stimulate global cell contraction (FBS), cell spreading cannot occur unless adhesion ligand density and substrate stiffness result in cell–substrate interactions strong enough to resist and overcome the inward tractional force. Under growth factor conditions that stimulate global cell protrusion (PDGF), such resistance is not required. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomaterials Elsevier

The effect of growth factor environment on fibroblast morphological response to substrate stiffness

Loading next page...
 
/lp/elsevier/the-effect-of-growth-factor-environment-on-fibroblast-morphological-zdyDmNafdx
Publisher
Elsevier
Copyright
Copyright © 2012 Elsevier Ltd
ISSN
0142-9612
D.O.I.
10.1016/j.biomaterials.2012.10.036
Publisher site
See Article on Publisher Site

Abstract

According to conventional understanding regarding dependence of cell behavior on substrate stiffness, tissue cells typically remain round on soft substrates but spread on stiff substrates. The current studies were carried out to learn if the growth factor environment influenced the foregoing relationship. Using standard methods, we prepared planar (2D) polyacrylamide (PA) gels ranging from 0.5 to 40 kPa and covalently cross-linked with fibronectin and collagen at concentrations ranging from 2.5 to 50 μg/ml. We carried out experiments with fibroblasts varying in their ability to form actin stress fibers and focal adhesions. In fetal bovine serum (FBS) containing medium – the growth factor environment in which most studies on cell spreading and substrate stiffness have been carried out – cell spreading increased with increasing substrate stiffness and adhesion ligand density. However, in platelet-derived growth factor (PDGF) containing medium, cell spreading was relatively independent of substrate stiffness and adhesion ligand density except little cell attachment occurred in the complete absence of cross-linked adhesion ligands. If cell contraction was blocked with blebbistatin, then cell spreading in FBS-containing medium became independent of substrate stiffness. The findings suggest that under growth factor conditions that stimulate global cell contraction (FBS), cell spreading cannot occur unless adhesion ligand density and substrate stiffness result in cell–substrate interactions strong enough to resist and overcome the inward tractional force. Under growth factor conditions that stimulate global cell protrusion (PDGF), such resistance is not required.

Journal

BiomaterialsElsevier

Published: Jan 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off