The effect of contact load on CoCrMo wear and the formation and retention of tribofilms

The effect of contact load on CoCrMo wear and the formation and retention of tribofilms Tribochemical reactions in a protein lubricated metal-on-metal (MoM) sliding contact may play a significant role for its wear performance. Such reactions lead to the formation of a carbonaceous ‘tribofilm’, which can act as a protective layer against corrosion and wear. The purpose of this study was to determine the effect of contact load on wear and the formation and retention of tribofilms.Wear tests were performed in a custom-made ball-on-flat testing apparatus that incorporated an electrochemical cell. A ceramic ball was used to articulate against low-carbon wrought CoCrMo alloy pins in bovine serum. Using a range of contact loads at a single potentiostatic condition (close to free potential), weight loss and changes in surface properties were evaluated.We determined that wear was influenced by the loading condition. As expected, wear increased with load, but the association between applied load and measured weight loss was not linear. In the intermediate load region, in the range of 32–48N (~58–80MPa), there was more than an order of magnitude drop in the wear per unit load, and the wear versus load data suggested an inflexion point at 49N. Regression analyses yielded a cubic model (R2=0.991; p=0.0002), where the cubic term, which represents the inflexion, was highly significant (p=0.0021). This model is supported by the observations that the minimum in the friction versus load curve is at 52N and the highest relative increase in polarization resistance occurred at 49N. Scanning electron microscopy and Raman spectroscopy indicated the absence of a tribofilm for the low and within the contact area of the high load cases. Synergistic interactions of wear and corrosion seem to play an important role. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wear Elsevier

The effect of contact load on CoCrMo wear and the formation and retention of tribofilms

Loading next page...
 
/lp/elsevier/the-effect-of-contact-load-on-cocrmo-wear-and-the-formation-and-6e40vKO35f
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0043-1648
eISSN
1873-2577
D.O.I.
10.1016/j.wear.2015.02.013
Publisher site
See Article on Publisher Site

Abstract

Tribochemical reactions in a protein lubricated metal-on-metal (MoM) sliding contact may play a significant role for its wear performance. Such reactions lead to the formation of a carbonaceous ‘tribofilm’, which can act as a protective layer against corrosion and wear. The purpose of this study was to determine the effect of contact load on wear and the formation and retention of tribofilms.Wear tests were performed in a custom-made ball-on-flat testing apparatus that incorporated an electrochemical cell. A ceramic ball was used to articulate against low-carbon wrought CoCrMo alloy pins in bovine serum. Using a range of contact loads at a single potentiostatic condition (close to free potential), weight loss and changes in surface properties were evaluated.We determined that wear was influenced by the loading condition. As expected, wear increased with load, but the association between applied load and measured weight loss was not linear. In the intermediate load region, in the range of 32–48N (~58–80MPa), there was more than an order of magnitude drop in the wear per unit load, and the wear versus load data suggested an inflexion point at 49N. Regression analyses yielded a cubic model (R2=0.991; p=0.0002), where the cubic term, which represents the inflexion, was highly significant (p=0.0021). This model is supported by the observations that the minimum in the friction versus load curve is at 52N and the highest relative increase in polarization resistance occurred at 49N. Scanning electron microscopy and Raman spectroscopy indicated the absence of a tribofilm for the low and within the contact area of the high load cases. Synergistic interactions of wear and corrosion seem to play an important role.

Journal

WearElsevier

Published: May 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off