The deterioration and environmental impact of binary cements containing thermally activated coal mining waste due to calcium leaching

The deterioration and environmental impact of binary cements containing thermally activated coal... Calcium-leaching processes can potentially degrade the structure of a concrete matrix. This problem is studied here through the progressive dissolution of Ca2+ in both ordinary Portland cement pastes (C-0) and binary cement blends (C-20) containing 20% thermally Activated Coal Mining Waste (ACMW).1 A series of accelerated tests are conducted that involve the immersion of these cement pastes in a 6 M ammonium nitrate solution at a temperature of 20 °C for 7 and for 21 days. A rise in paste porosity was observed, due to increased capillary pore sizes of between 5 and 0.1 μm. In the case of the 20% ACMW pastes (C-20), calcium leaching decreased, probably as a consequence of the pozzolanic effect of the ACMW, while potassium and magnesium leaching increased, due to the presence of the phyllosilicates in the ACMW. The paste compounds most affected by leaching were Ca(OH)2, C6AS3H32, and C4AC¯H12. In general terms, it can be concluded that the incorporation of ACMW into binary cements slightly reduces the calcium leaching phenomena. Concerning the environmental impact assessment, the substitution of 20% OPC by ACMW reduced CO2 emissions by as much as 12% and improved energy efficiency by using approximately 19% fewer fossil resources. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

The deterioration and environmental impact of binary cements containing thermally activated coal mining waste due to calcium leaching

Loading next page...
 
/lp/elsevier/the-deterioration-and-environmental-impact-of-binary-cements-bH1wHxzYvc
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.02.127
Publisher site
See Article on Publisher Site

Abstract

Calcium-leaching processes can potentially degrade the structure of a concrete matrix. This problem is studied here through the progressive dissolution of Ca2+ in both ordinary Portland cement pastes (C-0) and binary cement blends (C-20) containing 20% thermally Activated Coal Mining Waste (ACMW).1 A series of accelerated tests are conducted that involve the immersion of these cement pastes in a 6 M ammonium nitrate solution at a temperature of 20 °C for 7 and for 21 days. A rise in paste porosity was observed, due to increased capillary pore sizes of between 5 and 0.1 μm. In the case of the 20% ACMW pastes (C-20), calcium leaching decreased, probably as a consequence of the pozzolanic effect of the ACMW, while potassium and magnesium leaching increased, due to the presence of the phyllosilicates in the ACMW. The paste compounds most affected by leaching were Ca(OH)2, C6AS3H32, and C4AC¯H12. In general terms, it can be concluded that the incorporation of ACMW into binary cements slightly reduces the calcium leaching phenomena. Concerning the environmental impact assessment, the substitution of 20% OPC by ACMW reduced CO2 emissions by as much as 12% and improved energy efficiency by using approximately 19% fewer fossil resources.

Journal

Journal of Cleaner ProductionElsevier

Published: May 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off