The carbon credentials of hydrogen gas networks and supply chains

The carbon credentials of hydrogen gas networks and supply chains Projections of decarbonisation pathways have typically involved reducing dependence on natural gas grids via greater electrification of heat using heat pumps or even electric heaters. However, many technical, economic and consumer barriers to electrification of heat persist. The gas network holds value in relation to flexibility of operation, requiring simpler control and enabling less expensive storage. There may be value in retaining and repurposing gas infrastructure where there are feasible routes to decarbonisation. This study quantifies and analyses the decarbonisation potential associated with the conversion of gas grids to deliver hydrogen, focusing on supply chains. Routes to produce hydrogen for gas grids are categorised as: reforming natural gas with (or without) carbon capture and storage (CCS); gasification of coal with (or without) CCS; gasification of biomass with (or without) CCS; electrolysis using low carbon electricity. The overall range of greenhouse gas emissions across routes is extremely large, from − 371 to 642 gCO2eq/kW hH2. Therefore, when including supply chain emissions, hydrogen can have a range of carbon intensities and cannot be assumed to be low carbon. Emissions estimates for natural gas reforming with CCS lie in the range of 23–150 g/kW hH2, with CCS typically reducing CO2 emissions by 75%. Hydrogen from electrolysis ranges from 24 to 178 gCO2eq/kW hH2 for renewable electricity sources, where wind electricity results in the lowest CO2 emissions. Solar PV electricity typically exhibits higher emissions and varies significantly by geographical region. The emissions from upstream supply chains is a major contributor to total emissions and varies considerably across different routes to hydrogen. Biomass gasification is characterised by very large negative emissions in the supply chain and very large positive emissions in the gasification process. Therefore, improvements in total emissions are large if even small improvements to gasification emissions can be made, either through process efficiency or CCS capture rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

The carbon credentials of hydrogen gas networks and supply chains

Loading next page...
 
/lp/elsevier/the-carbon-credentials-of-hydrogen-gas-networks-and-supply-chains-EegC1B9wWs
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2018.04.089
Publisher site
See Article on Publisher Site

Abstract

Projections of decarbonisation pathways have typically involved reducing dependence on natural gas grids via greater electrification of heat using heat pumps or even electric heaters. However, many technical, economic and consumer barriers to electrification of heat persist. The gas network holds value in relation to flexibility of operation, requiring simpler control and enabling less expensive storage. There may be value in retaining and repurposing gas infrastructure where there are feasible routes to decarbonisation. This study quantifies and analyses the decarbonisation potential associated with the conversion of gas grids to deliver hydrogen, focusing on supply chains. Routes to produce hydrogen for gas grids are categorised as: reforming natural gas with (or without) carbon capture and storage (CCS); gasification of coal with (or without) CCS; gasification of biomass with (or without) CCS; electrolysis using low carbon electricity. The overall range of greenhouse gas emissions across routes is extremely large, from − 371 to 642 gCO2eq/kW hH2. Therefore, when including supply chain emissions, hydrogen can have a range of carbon intensities and cannot be assumed to be low carbon. Emissions estimates for natural gas reforming with CCS lie in the range of 23–150 g/kW hH2, with CCS typically reducing CO2 emissions by 75%. Hydrogen from electrolysis ranges from 24 to 178 gCO2eq/kW hH2 for renewable electricity sources, where wind electricity results in the lowest CO2 emissions. Solar PV electricity typically exhibits higher emissions and varies significantly by geographical region. The emissions from upstream supply chains is a major contributor to total emissions and varies considerably across different routes to hydrogen. Biomass gasification is characterised by very large negative emissions in the supply chain and very large positive emissions in the gasification process. Therefore, improvements in total emissions are large if even small improvements to gasification emissions can be made, either through process efficiency or CCS capture rate.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off